Sub-jet Structure as a Discriminating Quenching Probe

X. Zhang¹, L. Apolinário², J. G. Milhano² and M. Ploskon¹

1 Lawrence Berkeley National Lab. (US) 2 Instituto Superior Técnico (PT)

Novel observable for jet quenching²

- The problem we want to answer: define an observable that
 - Is strongly sensitive to internal jet structure modifications and can differentiate between jet quenching mechanisms
 - Is attractive experimentally
 - Has limited sensitivity to heavy-ion background and its fluctuations
 - Needs no p_T /constituent cuts and/or no additional background removal
 - Is attractive theoretically
 - Collinear and IR safe
 - Calculable in theoretical frameworks with little sensitivity to hadronization

Exploring Jet Structure with Sub-jets

- Sub-jets: re-clustering the constitutes in a jet (possibly a different algorithm)
- Smaller radius/area reduces the background fluctuations and pileup
- Opening the degree of freedom in jets details of fragmentation with decreased dependency on hadronic DOFs, provides sensitivity to details of the parton radiation/shower

Setup

- Simulation of $\sqrt{s} = 2.76$ TeV collisions
 - Vacuum: PYTHIA 8, tune 4C
 - Medium: 0-10% Pb–Pb collisions
 - Q-PYTHIA ($q^{-1} = 6 \text{ GeV}^{2} \text{fm}^{-1}$)
 - JEWEL (default HEP forge settings)
- Jet: anti-*k*_T, *R*=0.5 (0.4), sub-jet: *k*_T, *R*=0.1
- Q-PYTHIA:
 - medium induced gluon radiation
 - modified vacuum splitting function
 - soft collimated radiation

- JEWEL:
 - radiative+elastic energy loss
 - LPM effect
 - Iarge energy redistribution
- 1. T. Sjostrand, S. Mrenna, and P. Skands, PYTHIA 6.4 Physics and Manual, JHEP 0605 (2006) 026., note PYTHIA 8 used as well
- 2. Jet reconstruction: M. Cacciari, G. P. Salam, G. Soyez, FastJet User Manual, Eur.Phys.J. C72 (2012) 1896.
- 3. Q-PYTHIA: N. Armesto, L. Cunqueiro and C. A. Salgado, A Medium-modified implementation of final state radiation, Eur.Phys.J. C63 (2009) 679–690.
- 4. JEWEL: K. C. Zapp, F. Krauss and U. Wiedemann, A perturbative framework for jet auenching, JHEP 1303 (2013) 080.

Subjets within jets...

Different multiplicity of sub-jets in the two models

A promising tool for differentiating quenching mechanisms? Note: behavior is weakened by the presence of HI background

Some properties of jet substructure - distance

Distance between the two hardest sub-jets is systematically broader in Q-PYTHIA than in vacuum — opposite feature seen in JEWEL

6

- however, it is a small effect and the feature is not robust in heavy-ion background
- At high jet $p_T r_{sj}$ is insensitive to medium effects

Some properties of jet substructure - p_T fraction

$$z_{
m sj} = p_{
m T,sj}/p_{
m T,jet}$$

- *z*_{sj} evolves with jet *p*_T (slow growth at high-p_T)
 - Useful for disentangling quenching mechanisms
 - CAVEAT: observable strongly susceptible to background (via jet *p*_T and sub-jet *p*_T)
 - Is there a better one?

Practical observation - robust observable?

The local background for the two sub-jets is (to a great extend) similar => use the p_T difference between the two leading sub-jets In the leading order (FastJet median background subtraction):

$$\Delta p_T^{sj12} = p_T^{sj1} - \rho^{BG} \times A^{sj1} \pm \delta^{BG}(A^{sj1}) - (p_T^{sj2} - \rho^{BG} \times A^{sj2} \pm \delta^{BG}(A^{sj2}))$$

background terms cancel out for locally uniform background

Tests on a realistic LHC heavy-ion background show a promising behavior

Medium Modified Jet Substructure

Medium Modified Jet Substructure

- **Quantiles** of Δz_{sj} evolve with jet p_T and are sensitive quenching modeling
- Robust selections is possible

Impact on known observables - examples...

11

- Jet $R_{AA}(\Delta z_{sj})$ a simple measurement allowing to study quenching features
 - A jet by jet selection on Δz_{sj} carries little experimental difficulties (both in pp and AA)
- Differences for Δz_{sj} selected jets with respect to inclusive R_{AA} :
 - For large Δz_{sj} : R_{AA} suppressed in Q-PYTHIA but enhanced in JEWEL
 - The opposite behavior for small Δz_{sj}
- Small R-jet dependence only for Q-PYTHIA

Note: These are shown as examples - different selections on sub-jet p_T difference possible - e.g. moments of the distributions etc.)

¹³ Coincidences: Jet Trigger - Sub leading Recoil Jet

- The Δz_{sj} of the recoil jets
 - Trigger jets leading jet in $p_T > 80 \text{ GeV}/c$
 - Recoil jets sub-leading jet in $p_T > 20 \text{ GeV}/c$
 - Azimuthal Requirement:
 - φ(leading, sub-jet) > π/2

- JEWEL: Strong modifications for sub-leading/recoil jets
 - Similar feature (but quantitatively weaker) seen for "vacuum" dijets - sign of different fragmentation selection
 - Q-PYTHIA: stronger modification for recoils jets; qualitatively similar as for leading jets

hadron-jet coincidences

- In all cases different recoil jet
 fragmentation is selected (trigger hadron selects the hardest jets)
- Weak dependence on jet $p_T > 100 \text{ GeV}/c$
- As expected inverted I_{AA} for the lowest and highest Δz_{sj}

- The Δz_{sj} of the recoil jets
 - Trigger particle leading, pT > 20 GeV/c
 - Requirement ϕ (hadron, recoil-jet)>2/3 π

Conclusions and outlook

Difference of subjet-p_T:

- Sensitive to quenching mechanism
- Experimentally simple to implement and robust against background
- IR&C safe and calculable in theoretical frameworks

Outlook:

- Using sub-jets and/or Δz_{sj} selections explore
 - Experimental applications! -> measurements rigorously calculable
 - Inclusive and semi-inclusive observables
 - Other jet shape observables
- Study quark and gluon induced fragmentation separately (?)

Extra slides

Observation #2

- Δ_{sj} and/or Δz_{sj} clean sensitive to jet p_T opposite behaviors in small and large Δz_{sj}
 - Differences are more visible in higher jet p_T
 - Promising tool of discrimination between models

17

18 — Robust Against HI Background ΔZ_{si} $\Delta_{\rm sj} = p_{\rm T, subjet}^{\rm 1st \ leading} - p_{\rm T, subjet}^{\rm 2nd \ leading}, \quad \Delta z_{\rm sj} = \Delta_{\rm sj} / p_{\rm T, jet}$ $\sigma(\Delta z^{hybrid}_{Si} - \Delta z^{vacuum}_{Sj})$ Jet: anti- k_{T} , R=0.5, \ln_{iet} I<1, sub-jet: k_{T} , R=0.1 Probability density E_{parton}=100 GeV Jet: anti- k_{T} , R=0.5, $\ln_{int}I<1$, sub-jet: k_{T} , R=0.1Gluon jet Quark jet Gluon jet 10 Quark jet 0.04 5 0.02 0 <u>-0.5</u> -0.4 -0.3 -0.2 -0.1 0.2 0.3 0.4 0.1 0.5 60 80 100 120 160 0 140 180 Δz_{si}^{hybrid} - Δz_{si}^{vacuum} $E_{\rm parton}$ (GeV)

- Inject single energetic gluon and/or quark pairs in PYTHIA string fragmentation in vacuum
- Hybrid event embed final state particles in soft background generated according to Boltzmann
- Δz_{sj} two hardest sub-jets at the same local phase space robust against the local background fluctuations

19 Leading Jet Triggered Recoil Jets

- Leading jet triggered recoil sub-leading jets
- Sensitive to medium modification
- Tag the path length dependence of medium effect

- Q-PYTHIA $\sqrt{s_{NN}} = 2.76$ TeV, trigger jet $p_{T} > 120$ GeV/c 0.8 Recoil leading w/o Δz_{si} cut R_{AA}, $\Delta z_{\rm s} > 0.8$ Inclusive 0.6 0.4 0.2 0 50 100 150 200 250 300 $p_{\rm T,jet}, p_{\rm T,jet}^{\rm recoil \ leading} \, ({\rm GeV}/c)$
- Recoil sub-leading jet R_{AA} in $\Delta z_{si} > 0.8$ significant from the sub-leading jets w/o Δz_{si} cut, consistent with inclusive jets in p_T >50 GeV/c

Δz_{sj} Triggered Recoil Jet I_{AA}

- Trigger: leading particle in $p_T > 10 \text{ GeV}/c$
 - Recoil jet: away side associate jets

$$I_{\rm AA}(\Delta z_{\rm sj} \text{ cut}) = \frac{1/N_{\rm AA}^{\rm trg} dN_{\rm AA}/dp_{\rm T}|_{\Delta z_{\rm sj} \text{ cut}}}{1/N_{\rm pp}^{\rm trg} dN_{\rm pp}/dp_{\rm T}|_{\Delta z_{\rm sj} \text{ cut}}}$$

 $|\varphi_{\rm jet}^{\rm recoil} - \varphi^{\rm trigger}| > 2/3\pi$

trigger

recoil jet

• Δz_{sj} triggered jet I_{AA} — very clean signal to distinguish quenching modelings

• Independent on jet R — Insensitive to large angular (soft) radiation

Conclusion and Outlook

- Sub-jet structure, Δz_{sj} , robust against background fluctuations
- Δz_{sj} triggered jet R_{AA} , I_{AA} clean sensitive to quenching modelings, insensitive to (soft) large angular energy redistribution
- Outlook
- Distinguish quenched and unquenched jet samples or constrain the quenching "strength"
 - Opportunity to differentiate gluon jets and quark jets, light flavor jets and have flavor jets (?)

Backup

Quenching Models

- Vacuum jets PYTHIA
- Medium modified jets:
- Q-PYTHIA: radiation energy loss of BDMPS-Z type — modification of parton splitting function in vacuum
- JEWEL: contains both of elastic and radiative energy loss — implemented the Landau-Pomeranchuck-Migdal effect

N. Armesto, L. Cunqueiro and C. A. Salgado, Q-PYTHIA: A Medium-modified implementation of final state radiation, Eur. Phys. J. C63 (2009) 679

K. C. Zapp, F. Krauss and U. Wiedemann, A perturbative framework for jet quenching, JHEP 1303 (2013) 080.

Number of Sub-jets

Number of Sub-jets

Probability density

Number of sub-jets

120

- Sensitive to quenching mechanisms
- Promising tool to distinguish quark jets and gluon jets

Medium Modified Jet Substructure

25

Medium Modified Jet Substructure

- Mean value of Δz_{sj} clean evolves with jet p_T and sensitive to to quenching modeling
- Strong power of discrimination between models
- In Δz_{sj} >0.8, mean value insensitive to quenching models similar response to jet p_{T} between models

Δ_{sj} and Δz_{sj} Distributions

 $\Delta_{\rm sj} = p_{\rm T, subjet}^{\rm 1st \ leading} - p_{\rm T, subjet}^{\rm 2nd \ leading}, \quad \Delta z_{\rm sj} = \Delta_{\rm sj} / p_{\rm T, jet}$

- Δ_{sj} and Δz_{sj} (partly) cancels out the background fluctuations on $p_{T,subjet}$
- Sensitive to the details of modeling the energy carried by 1st leading subjets

Δz_{sj} Triggered Jet R_{AA}

- Δz_{sj} triggered jet R_{AA} is strongly suppressed in Q-PYTHIA and clean enhanced JEWEL w. r. t. the inclusive — very clean signal to distinguish quenching modelings
- Triggered R_{AA} uncorrelated with jet R insensitive to large angular (soft) radiation

Leading Particle/Jet Triggered Jets

29

Leading Jet Triggered Recoil Jets

- Tag the path length dependence of medium effect
- Recoil sub-leading jet R_{AA} in Δz_{sj} >0.8 significant from the sub-leading jets w/o Δz_{sj} cut, consistent with inclusive jets in p_T >50 GeV/*c*

0.2

0

50

100

150

200

250

 $p_{\rm T,jet}, p_{\rm T,jet}^{\rm recoil \ leading} \, ({\rm GeV}/c)$

300

Δz_{sj} Triggered Recoil Jet I_{AA}

- Trigger: leading particle in $p_T > 10 \text{ GeV}/c$
 - Recoil jet: away side associate jets

$$I_{\rm AA}(\Delta z_{\rm sj} \text{ cut}) = \frac{1/N_{\rm AA}^{\rm trg} dN_{\rm AA}/dp_{\rm T}|_{\Delta z_{\rm sj}} \text{ cut}}{1/N_{\rm pp}^{\rm trg} dN_{\rm pp}/dp_{\rm T}|_{\Delta z_{\rm sj}} \text{ cut}}$$

 $|\varphi_{\rm jet}^{\rm recoil} - \varphi^{\rm trigger}| > 2/3\pi$

trigger

recoil jet

• Δz_{sj} triggered jet I_{AA} — very clean signal to distinguish quenching modelings

• Independent on jet R — Insensitive to large angular (soft) radiation

Δz_{sj} Triggered Recoil Jet I_{AA}

Quark vs. Gluon Jets

JEWEL+PYTHIA

Eur. Phys. J. C74 (2014) 2, 2762

CMS Di-jet

Phys.Rev. C84 (2011) 024906