We discuss the generation of anisotropic flows v_n for a fluid at fixed $\eta/s(T)$ by means of an event-by-event transport approach. Such an approach recovers the universal features of the ideal hydrodynamics. We discuss the effect of the η/s and its temperature dependence on the build up of the $v_n(p_T)$ revealing that only in ultra-central collisions (0-0.2%) the $v_n(p_T)$ show the largest sensitivity to the T dependence of η/s in the QGP phase and this sensitivity increases with the order of the harmonic n. Moreover, the study of the correlations between the initial spatial anisotropies ϵ_n and the final flow coefficients v_n show that at LHC energies there is more correlation than at RHIC energies. The degree of correlation increases from central to peripheral collisions, but only in ultra-central collisions at LHC, we find that the linear correlation coefficient $C(n,n)=1$ for $n=2, ..., 5$.

1 - Transport approach: viscous corrections

$$ p^n \frac{\partial}{\partial x} f(x,p) = C_{22} $$

We evaluate viscous corrections to transverse momentum spectra and anisotropic flow by solving numerically a relativistic Boltzmann equation.

In the limit $\sigma \to \infty$, a generic observable $f(q)$ can be expanded in powers of $1/\sigma$.

We evaluate the ideal hydrodynamics limit f_0^{ϵ}, v_2^{ϵ} and the viscous corrections δf and δv_n solving the Relativistic Boltzmann equation for large values of the cross section σ.

2 - Transport approach: fixing $\eta/s(T)$

To fix locally η/s we need to know $\eta/s(0,M,T) \xrightarrow{\text{Chapman-Enskog approximation}} \eta/s$.

Chapman-Enskog approximation

$$ \frac{d\phi_n}{d\epsilon_n} = \int d\epsilon f_0^{\epsilon}(\epsilon_n, p_n) - \frac{1}{15} \frac{1}{\sigma_n} g_n(p_n) $$

Chapman-Enskog is a good approximation already at 1st order 3% ($\approx 3\%$ at 2nd order)

Simulating a fixed η/s

Instead of focusing on specific microscopic calculations we fixed the total cross section in order to have the wanted η/s.

σ is evaluated in each cell of the coordinate space of our grid during the dynamics.

3 - Effects of $\eta/s(T)$ on the $v_n(p_T)$

- Different v_n can probes different values of $\eta/s(T)$ during the expansion of the fireball.
- $v_n(p_T)$ at RHIC is more sensitive to the value of η/s at low temperature.
- $v_n(p_T)$ and $v_2(p_T)$ are more sensitive to the value of η/s than the $v_3(p_T)$.
- At LHC energies $v_n(p_T)$ is more sensitive to the value of η/s in the QGP phase.

At LHC energies:

- At low p_T, $v_2(p_T) \approx p_T^2$. At higher p_T, v_2 saturates while v_3 for $n>3$ increase linearly with p_T.
- In ultra-central collisions the $v_2(p_T)$ have a stronger sensitivity to the T dependence of η/s in the QGP phase.
- The sensitivity to the T dependence of η/s increases with the order of the harmonic n.

4 - Correlations between v_n and ϵ_n

A measure of the linear correlation is given by the linear correlation coefficient:

$$ C_{\eta/s,n} = \int \frac{d^3x}{(2\pi)^3} f(x,p) = \epsilon_n \cdot v_n $$

$C_{\eta/s,n}$ is a decreasing function with the impact parameter.

- At LHC there is a stronger correlation between v_n and ϵ_n than at RHIC for all n.
- For ultra-central collisions v_n are strongly correlated to ϵ_n $C_{\eta/s,n}/p_T = v_n = \epsilon_n$ for $n=2,3,4$.

5 - Outlook

- To study the role of the Equation of State on the anisotropic flows $v_n(p_T)$ and the viscous corrections δv_n.
- To include the hadronization by coalescence.