Broad η **Range Survey of d** N_{ch} /d η at the LHC

MOTIVATION

- Insight into overall particle production
- Whether $N_{\rm ch}$ scale with $N_{\rm part}$ or $N_{\rm coll}$ or both
- Model benchmark and discriminator

FORWARD MULTIPLICITY **DETECTOR (FMD)**

- ► Silicon strips, 51 200 channels
- ► $-3.5 < \eta < -1.7$ and

 $1.7 < \eta < 5.$

CORRECTION FOR SECONDARIES IN FMD

- Material enhances measured $N_{\rm ch}$ by up–to 300%
- Hard to simulate accurately
- Data-driven correction, based on previous results [1, 2]

SILICON PIXEL DETECTOR (SPD)

- ► Silicon pixels, 9.8×10^6 channels.
- ► $|\eta| < 2$

MEASUREMENTS

- Combined FMD & SPD
- Broad pseudorapidity coverage ($-3.5 < \eta < 5$)
- Extend previous results to higher centralities [2, 3, 4]
- ▶ Pb–Pb at $\sqrt{s_{NN}} = 2.76$ TeV
- ▶ p-Pb at $\sqrt{s_{NN}} = 5.02$ TeV, two centrality estimators [4]
- ► ZNA forward ($\theta \approx 0$) neutrons
 - ▶ VOA forward ($2.8 < \eta < 5.1$) $N_{\rm ch}$.

Combined and symmetrised charged–particle pseudorapidity density for the 90% most central collisions in 10 centrality classes [1].

FITTED FUNCTIONS

- ► For Pb–Pb: $f_{GG}(\eta) = A_1 e^{-\frac{\eta^2}{2\sigma_1}} A_2 e^{-\frac{\eta^2}{2\sigma_2}}$
- ► For p-Pb: $f_{LGG}(\eta) = (a\eta + b)f_{GG}(\eta)$
- Find A_2/A_1 and σ_2/σ_1 roughly constant in both cases.
- Strong constrains on shape mid– and forward rapitidies constrain one another

 $dN_{ch}/d\eta$ IN p-Pb — ZNA

Combined charged-particle pseudorapidity density selecting on forward neutrons (ZNA)

$dN_{ch}/d\eta$ IN p-Pb — V0A

Combined charged–particle pseudorapidity density selecting on forward $N_{\rm ch}$ (V0A)

TOTAL N_{ch} IN Pb–Pb

Total charged–particle production in Pb–Pb as a function of N_{part} [1]. Particle production is observed to scale near-linearly with N_{part} , similar to lower energy data [5].

TOTAL N_{ch} IN p-Pb SCALED BY $\langle N_{part} \rangle$

MODEL COMPARISONS FOR Pb–Pb

Total charged–particle production in p-Pb per participant. Particle production is observed to scale near-linearly with N_{part} when using the ZNA estimator.

HIJING [6], AMPT (with and without string melting) [7], & EPOS-LHC [8] compared to data [1]. HIJING generally overestimates the number of charged particles, while AMPT only come close in selected centrality classes. EPOS-LHC generally underestimates the number of charged particles produced, but captures the overall shape of the distributions.

REFERENCES

[1] Adam, J. et al. (ALICE) (2015), 1509.07299.

[2] Abbas, E. et al. (ALICE), *Phys.Lett.* (2013), **B726**, 610.

[3] Aamodt, K. et al. (ALICE), *Phys.Rev.Lett.* (2011), **106**, 032301.

[4] Adam, J. et al. (ALICE), *Phys. Rev.* (2015), **C91 6**, 064905.

[5] Back, B. B. et al. (PHOBOS), *Phys. Rev.* (2006), **C74**, 021902. [6] Wang, X.-N. et al., *Phys. Rev.* (1991), **D44**, 3501. [7] Lin, Z.-W., et al., *Phys. Rev.* (2005), **C72**, 064901.

[8] Pierog, T., et al. (2013), 1306.0121.

CONCLUSIONS

- Similar characteristic shape in both systems
- \triangleright $\langle N_{part} \rangle$ scaling in both systems
- Models do not get shape or level of Pb–Pb

ALICE[©] A Large Ion Collider Experiment | Made by C.H. Christensen (Niels Bohr Institute) | Quark Matter 2015