(Anti-)deuteron production and anisotropic flow measured with ALICE at the LHC

Ramona Lea
Dipartimento Di Fisica, Università di Trieste e INFN, Sezione Trieste
For the ALICE Collaboration

QUARK MATTER 2015
XXV INTERNATIONAL CONFERENCE ON ULTRARELATIVISTIC NUCLEUS-NUCLEUS COLLISIONS
SEPTEMBER 27 - OCTOBER 3, 2015
KOBE FASHION MART, KOBE, JAPAN
Overview

- Motivation
- Deuteron identification with the ALICE detector
- Deuteron elliptic flow measurement
- Comparison of the measured deuteron v_2 with other identified particles and scaling tests
Elliptic flow (v_2) is sensitive to the system evolution:

- Constrains initial conditions and particle production mechanisms

Identified particle v_2 vs transverse momentum allows for the study of:

- Rate of hydrodynamic radial expansion (mass dependence of v_n vs p_T)
- Properties of the deconfined phase (e.g. viscosity)
- Details of hadronization mechanism (e.g. coalescence)
Motivation – Deuteron

- The measurement of light nuclei v_2 will help in the understanding of particle production mechanisms
Motivation – Deuteron

- The measurement of light nuclei v_2 will help in the understanding of particle production mechanisms

- Do deuterons follow the mass ordering observed for lighter particles?
- Do deuterons follow a mass scaling or are better described by hydrodynamical based models?
ALICE Detector

Inner Tracking System (ITS):
- Primary vertex
- Tracking
- Particle identification via dE/dx

Time Projection Chamber (TPC):
- Tracking
- Particle identification via dE/dx

Time Of Flight (TOF):
- Particle identification via velocity measurement

V0A and VOC:
- Centrality classes
- Symmetry plane determination

Deuteron identification

Low momenta

Nuclei identification via dE/dx measurement in the TPC:

- dE/dx resolution in central Pb-Pb collisions: 7%
- Excellent separation of (anti-)nuclei from other particles over a wide range of momentum

Higher Momenta

Velocity measurement with the Time Of Flight detector is used to evaluate the m^2 distribution.

- Excellent TOF performance: $\sigma_{\text{TOF}} \approx 85$ ps in Pb-Pb collisions.
- $\pm 3\sigma$-cut around expected TPC dE/dx for deuterons reduces drastically the background from TPC and TOF mismatch.
Flow analysis details

Analyzed data samples
- Pb - Pb at $\sqrt{s_{_{NN}}}$ = 2.76 TeV (~ 35M events)
- Events are classified into 6 different centrality intervals

Deuteron identification
Identical to spectra analyses:
1) Energy loss in TPC: require dE/dx signal to be within 3σ of expected value for all p_T
2) Time of flight: fit to mass signal of TOF for $p_T > 1$ GeV/c

Track selections:
- $0.5 < p_T < 5$ GeV/c
- $-0.8 < \eta < 0.8$

Fit function: Total : Gauss + Exponential tail + Exponential
Flow analysis method

- v_2 is measured using the scalar product method
 - Hits measured by V0A ($2.8 < \eta < 5.1$) and V0C ($-3.7 < \eta <-1.7$) are used as reference particles
 - Deuteron candidates are the particles of interest ($|\eta|<0.8$)

- The contribution to the measured elliptic flow (v_2^{Tot}) due to misidentified deuterons (v_2^{Bkg}) was removed by studying the azimuthal correlations versus ΔM ($\Delta M = m_{\text{TOF}} - m_d$)

$$v_2^{\text{Tot}}(\Delta M) = v_2^{\text{Sig}}(\Delta M) \frac{N^{\text{Sig}}}{N^{\text{Tot}}(\Delta M)} + v_2^{\text{Bkg}}(\Delta M) \frac{N^{\text{Bkg}}}{N^{\text{Tot}}(\Delta M)}$$

- The yields N^{Sig} and N^{Bkg} are extracted from fits of the invariant mass distribution obtained with the TOF detector
The value of $v_2(p_T)$ increases progressively from central to semi-central collisions.
Comparison with π and p

$\pi^+ (p+\bar{p})$ from: JHEP 06 (2015) 190 (arXiv:1405.4632)

ALICE Preliminary
Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV 10-20%

10-20%

ALI-PREL-97023
Comparison with π and p

30-40%
Comparison with π and p

π^+ and $(p+\bar{p})$ from: JHEP 06 (2015) 190 (arXiv:1405.4632)

30-40%

ALICE Preliminary

Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV 30-40%

Low p_T: deuterons follow mass ordering \rightarrow Radial Flow

ALICE-PREL-97027
p_T/A scaling

Compare deuteron and proton: p_T/A scaling

- For $p_T/A > 1$ GeV/c: A scaling deviations of the order of ~20%
- Similar magnitude for all measured centrality classes
\[\frac{p_T}{n_q} \text{ scaling} \]

\(\pi^+ \) and \((p+\bar{p})\) from: JHEP 06 (2015) 190 (arXiv:1405.4632)

Compare deuteron with \(\pi\) and protons: \(\frac{p_T}{n_q} \) scaling

- For \(\frac{p_T}{n_q} > \sim 0.5 \text{ GeV}/c \): \(n_q \) scaling deviations of the order of \(\sim 20\% \)
- Similar magnitude for all measured centrality classes

ALICE Preliminary
Pb-Pb \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \) 30-40%
KE_T/n_q scaling

π^+ and $(p+\bar{p})$ from: JHEP 06 (2015) 190 (arXiv:1405.4632)

$KE_T = m_T - m_0 \quad m_T = \sqrt{p_T^2 + m_0^2}$

For $KE_T/n_q < 0.6$ GeV/c^2: significant deviations from NCQ scaling are seen in data for d

- Similar magnitude for all measured centrality classes

ALICE Preliminary

Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV 30-40%

29/09/15

Ramona Lea - QUARK MATTER 2015
Blast-Wave model

- Hydrodynamical calculations are able reproduce the main features of v_2 for $p_T<2$ GeV/c

- A simple model based on hydrodynamics is the Blast-Wave model [1,2]:

$$v_2(p_T) = \frac{\int_0^{2\pi} d\phi_s \cos(2\phi_s) I_2[\alpha_t(\phi_s)] K_1[\beta_t(\phi_s)][1 + 2s_2 \cos(2\phi_s)]}{\int_0^{2\pi} d\phi_s I_0[\alpha_t(\phi_s)] K_1[\beta_t(\phi_s)][1 + 2s_2 \cos(2\phi_s)]}.$$

Where I_0, K_1 and I_2 are modified Bessel function, and the function has 4 free parameters + the mass of the particle

- Measured π, K, p p_T spectra and $v_2(p_T)$ were fitted, and the parameters were used to predict deuteron $v_2(p_T)$

Blast-Wave model:
Blast-Wave model

v_2 Blast-Wave curve for deuteron is predicted from combined fit of π, K, p p_T spectra and $v_2(p_T)$

- Good description of the data in the measured p_T range
v_2 Blast-Wave curve for deuteron is predicted from combined fit of π, K, p p_T spectra and $v_2(p_T)$

- Good description of the data in the measured p_T range and for all the measured centralities
Blast-wave vs Coalescence

10-20%

How does the Blast-Wave prediction differ from expectations from coalescence?

- The measured v_2 of protons was used to compute the expected v_2 of deuterons (reverse n_n scaling = both p_T and v_2 of measured p was multiplied by 2) and the results were compared to data and Blast-Wave curves:
How does the Blast-Wave prediction differ from expectations from coalescence?

- The measured v_2 of protons was used to compute the expected v_2 of deuterons (reverse n_q scaling = both p_T and v_2 of measured p was multiplied by 2) and the results were compared to data and Blast-Wave curves:
 - simple coalescence model does not describe deuteron v_2, while the Blast-Wave model gives a good description of the measured elliptic flow of deuterons
Conclusions

- Deuteron v_2 was measured up to 5 GeV/c using the scalar product technique:
 - At low p_T, deuteron v_2 follows mass ordering, indicating a more pronounced radial flow in most central collisions, as observed also for lighter particles
 - A deviation from A (number of mass) and NCQ scaling at the level of $\pm 20\%$ was observed
 - The Blast-Wave model gives a good description of the measured elliptic flow of deuterons
p_T/n_q scaling: measured identified particle
KE_T/n_q scaling: measured identified particle
Comparison with π, k and p

ALICE Preliminary

Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV 10-20%

10-20%
Comparison with π, k and p

ALICE Preliminary

Pb-Pb $\sqrt{s_{\text{NN}}} = 2.76$ TeV 30-40%

30-40%
Combined Blast-Wave

ALICE Coll.: arXiv:1506.08951 [nucl-ex]

All particle spectra are described well with the BW fit.

Results from (anti-)(hyper-)Nuclei Production and Searches for Exotic Bound States with ALICE at the LHC
N. Sharma
28/09/15