

Soft-Hard Event Engineering (SHEE)

Barbara Betz¹, Jacquelyn Noronha-Hostler², Jorge Noronha^{2,3}, and Miklos Gyulassy²

¹Goethe University, Frankfurt am Main, Germany, ²Columbia University, New York, USA, ³Universidade de Sao Paulo, Sao Paulo, Brazil

Motivation

While the measured data on the nuclear modification factor for charged particles at RHIC and LHC energies can be well described by various models based on pQCD and AdS/CFT, the simultaneous description of the high- $p_T v_2$ remains a challenge.

To solve this high- $p_T v_2$ -puzzle, it has recently been shown [1,2] that a pQCD-energy loss based on a non-fluctuating background must include the medium transverse flow fields and a jet-medium coupling including the effects of the jet energy, the temperature of the medium, and nonequilibrium effects close to the phase transition. However, wide distributions of the low- $p_T v_n$'s (see Fig. 1) have proven that medium background models must not only render the mean value of low- $p_T v_n$'s but also the correct amount of fluctuations within a centrality class.

Hard-p_⊤ part

For the hard- p_{T} part, we use BBMG energy-loss model [1,4] where the pQCD-like energy loss is given by

 $\frac{dE}{dr} = \frac{dE}{d\tau} = -\kappa(E^2, T) E^0 \tau^1 T^3 \zeta_0 v_f.$ (1)

Here, E is the energy of the jet, T the temperature of the medium, and τ the path length.

The model includes jet-energy loss fluctuations via ζ_0 ,

Fig. 4a shows that the high- $p_{\tau} v_2$ for events with random e₂-eccentricity and the result from an averaged, smoothed background converge for very large p_{T} . The high- $p_T v_2$ for the top 1% e_2 events of the centrality class 20-30%, however, are enhanced over the other two scenarios.

The Figure demonstrates that the high- p_{T} v₂ is directly proportional to the low- $p_T v_2$ and that the width of the low- p_{T} v₂ distribution influences the value of the high- p_{T} v_2 . Besides that, the Figure shows that event-by-event fluctuations enhance the high- $p_{T} v_{2}$. Fig. 4b confirms that the high- p_{T} v₃ depends entirely on fluctuations with a magnitude that is 10 times lower than the high- $p_T v_2$. Please note that the anti-correlation of e_2 and e_3 -eccentricities is proven with Fig. 4b as the high- p_T v_3 for the random e_2 -events is larger than for the top 1% e₂ events.

Fig. 1: Probability distribution for event-by-event v_n's measured in different centrality classes [3].

fragmentation to pions, the effect of transverse flow via $v_f = \gamma_f \left[1 - v_f \cos(\phi_{\text{jet}} - \phi_{\text{flow}})\right]$, and the temperaturedependent jet-medium coupling of Ref. [2] fixed to meet a reference point of the nuclear modification factor. The $R_{AA}(p_T, \phi_{iet})$ is calculated event-by-event, leading to the respective v_n 's via a Fourier expansion:

$$\nu_n(p_T) = \frac{\int_0^{2\pi} d\phi \cos\left[n\left(\phi - \psi_n(p_T)\right)\right] R_{AA}(p_T, \phi)}{\int_0^{2\pi} d\phi R_{AA}(p_T, \phi)}, \quad (2)$$

where $\psi_n(p_T)$ is the event-plane angle. For a direct comparison with experiment [6], we calculate

$$v_n^{\text{high}}(p_T) = \frac{\langle v_n^{\text{low}} v_n^{\text{high}}(p_T) \cos\left[\psi_n^{\text{low}} - \psi_n^{\text{high}}(p_T)\right] \rangle_{\text{events}}}{\sqrt{\langle v_n^{2,\text{low}} \rangle_{\text{events}}}}, \quad (3)$$

using the low- p_{T} information from the events calculated by v-USPhydro.

The nuclear modification factor

Fig. 3 depicts the nuclear modification factor for central and mid-central events at $\sqrt{s_{NN}} = 2.76$ TeV LHC energy for the three e₂-eccentricity selections of the centrality classes 0-5% and 20-30%.

Impact of the method used to determine v_n

There are various ways of extracting the high- p_{T} v_n's. Besides Eq. (3), the arithmetic mean of the v_n 's calculated in Eq. (2) or their root mean square are commonly used. Fig. 5 depicts a comparison of these three methods to determine the high- $p_T v_2$ and v_3 .

The Figure shows that the results for the arithmetic mean and the root mean square are usually very close to each other, while the difference to the v_n 's calculated via Eq. (3) increases for the top 1% e_2 -eccentricity selections of the background medium considered.

0.2	(a) dE/dτ =	$-\kappa(E^2,T) E^0 \tau^1 T^3$	0.1	(b)	· · ·	· · · ·		· · · · · · · · · · · · · · · · · · ·	
	v–USPh	hydro, $\eta/s = 0.08$	mid-central			H O H	ALICE, V	/ ₃ {EP}	20–30%
0.15	•	⊦∎⊣	CMS, v ₂ {EP}		Ŧ	I			

From experiment, it is clear that high- p_T v₂ can only be measured from events that produce enough high-p_T v_2 particles. Events with a smaller eccentricity are less likely to produce high- p_{τ} particles since hard scattering processes are more likely to be absorbed by the medium.

We study if the eccentricity selection of the background medium within a given centrality class influences the high- p_{τ} v₂. For this, we couple the BBMG pQCD jet-energy loss model [1,4] with the event-by-event v-USPhydro model [5].

Soft-p_⊤ part

Idea

For the soft- p_{T} part, we use v-USPhydro [5], an event-byevent, relativistic viscous hydrodynamical model based on Glauber initial conditions. 15,000 initial conditions were generated and 1,000 events run through v-USPhydro in the centrality classes of 0-5% and 20-30% for η /s=0.08. A distribution of δe_2 and δv_2 is shown in Fig. 2.

Fig. 3: The nuclear modification factor for central and mid-central events at $\sqrt{s_{NN}}$ = 2.76 TeV LHC energy for the three e₂-eccentricity selections of the centrality classes 0-5% and 20-30%.

Fig. 3 shows that all e₂-eccentricity selections allow for a description of the measured data. The Figure demonstrates that the nuclear modification factor is independent of the e_2 -eccentricity distribution of the medium, once a single reference point is met.

The high- $p_T v_2$

Fig. 4 depicts the high- $p_T v_n$ calculated via Eq. (3) for the three different e₂-eccentricity selections of the centrality class 20-30% at Vs_{NN} =2.76 TeV LHC energy.

Fig. 5: The high- $p_T v_n$'s calculated via the arithmetic mean, the root mean square, and Eq. (3) for the three different e_2 eccentricity selections of the background medium.

Conclusions and Outlook

We coupled the BBMG pQCD jet-energy loss model [1,4] with the event-by-event, viscous hydrodynamical model v-USPhydro [5] and determined the high- p_{T} v₂ and v₃ for three different e₂-eccentricity selections of the background medium. We show that

- the $R_{\Delta\Delta}$ is independent of the e_2 -eccentricity distribution of the background medium,
- the high- $p_T v_2$ is directly proportional to the low- $p_T v_2$,
- the width of the low- $p_T v_2$ distribution influences the value of the high- $p_T v_2$.
- Our study confirms that
- event-by-event fluctuations enhance the high- $p_{T} v_{2}$,

Fig. 2: Probability distribution of δe_2 and δv_2 for Glauber initial conditions at $\sqrt{s_{NN}} = 2.76$ TeV obtained from v-USPhydro.

Eccentricity selection

- We selected 150 events per centrality class (out of the 15,000 initial conditions) with
- an event-by-event random e₂,
- the top 1% e₂ shown by the shaded area in Fig. 2, and
- a smoothed background medium profile.

Fig. 4: The high- $p_T v_n$'s calculated via Eq. (3) for the three different e_2 -eccentricity selections of the background medium.

e₂ and e₃-eccentricities are anti-correlated. In the future, we plan to apply the formalism to heavy quarks and pA collisions.

References

[1] B. Betz et al., arXiv:1509.00965 [hep-ph].

[2] J. Xu et al., Chin. Phys. Lett. **32**, no.9, 092501 (2015).

[3] ATLAS collaboration, JHEP **1311**, 183 (2013).

[4] B. Betz *et al.*, Phys. Rev. C **86**, 024903 (2014).

[5] J. Noronha-Hostler *et al.*, Phys. Rev. C **88**, 044916 (2013).

[6] ATLAS collaboration, arXiv: 1504.01289 [hep-ex].