The phase diagram of QCD

The detailed structure of the QCD phase diagram at high baryon densities is still under investigation. **Low-energy models** provide us with some guidance but:

- parameters of the models are fine-tuned (scale Λ_{NJL} and couplings at Λ_{NJL})
- parameters do not depend on T and μ
- typically not all possible interaction channels are included (not Fierz complete)

\Rightarrow Models require improvement from the point of view of the fundamental theory

From QCD to the low-energy model

QCD in the chiral limit:

$$\mathcal{L} = \bar{\psi}(i\partial - \vec{g}A + i\gamma_\mu A_\mu)\psi + \frac{1}{4}F_{\mu}^a F_{\mu}^a + \frac{g^2}{32} F_{\mu}^a F_{\mu}^a$$

- Quark self-interactions λ_ψ are induced by quark-gluon interactions
- Large λ_ψ triggers chiral symmetry breaking

Basic idea:

- **Momentum scale**
- **QCD**
- **Low-energy model**
- **Low-energy observables**

Functional Renormalization Group (FRG) and Model

Wetterich’s flow equation [1]:

$$\frac{\partial}{\partial k} \Gamma_k[\phi_k] = \frac{1}{2} Tr k \partial R_k \left(\Gamma_k[\phi_k] + R_k \right)^{-1} = \frac{1}{2} \bigcirc$$

Γ_k: scale-dependent effective action

$$\lim_{k \to \infty} \Gamma_k[\phi_k] = S[\phi]$$

$$\lim_{k \to 0} \Gamma_k[\phi_k] = \Gamma_0[\phi]$$

Fierz complete ansatz [2]:

$$\Gamma_k = \int_0^{\Lambda_{NJL}} \left[\bar{\psi}(\partial \tau - \bar{A} + i\gamma_\mu A_\mu)\psi + \frac{1}{4} F_{\mu}^a F_{\mu}^a + \frac{(\partial \bar{A})^2}{2} \right]$$

$$+ \frac{1}{2} \left[\lambda_\psi (V - A) + \lambda_\sigma (V + A) + \lambda_\lambda (S - P) \right] + \lambda_{NJL} [2(V - A)^4k + 1/N_c(V - A)]$$

with

- $V - A = (\bar{\psi}\gamma_\tau \psi)^2 + (\bar{\psi}\gamma_{\tau b} \gamma_\tau \psi)^2$
- $V + A = (\bar{\psi}\gamma_{\tau b} \gamma_\tau \psi)^2 - (\bar{\psi}\gamma_\tau \psi)^2$
- $S - P = (\bar{\psi}\gamma_\tau \psi)^2 - (\bar{\psi}\gamma_{\tau b} \gamma_\tau \psi)^2 - (\bar{\psi}\gamma_{\tau b} \gamma_\tau \psi)^2$, with a, b, \ldots flavor indices
- $V - A)^4k = (\bar{\psi}\gamma_\tau T^a \psi)^2 + (\bar{\psi}\gamma_\tau \gamma_{\tau b} T^a \psi)^2$, with T^a SU(Nc) generators
- Landau gauge
- Running coupling $g(k)$ is taken as input from [3]
- 4-fermion couplings are set to zero at initial scale $\Lambda_W = 20$ GeV

\Rightarrow Coupled equations for λ_ψ, where all of them include contributions proportional to:

-Fierz-complete ansatz for interactions in the NJL-model

Results for $\mu = 0$

Mean field

<table>
<thead>
<tr>
<th>$\lambda_{NJL}/(\Lambda_{NJL})$</th>
<th>$\lambda_{NJL}/(\Lambda_{NJL})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu = 0$ in MeV</td>
<td>$\mu = 0$ in MeV</td>
</tr>
<tr>
<td>$\mu = 0$ in MeV</td>
<td>$\mu = 0$ in MeV</td>
</tr>
</tbody>
</table>

With fluctuations

<table>
<thead>
<tr>
<th>$\lambda_{NJL}/(\Lambda_{NJL})$</th>
<th>$\lambda_{NJL}/(\Lambda_{NJL})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu = 0$ in MeV</td>
<td>$\mu = 0$ in MeV</td>
</tr>
<tr>
<td>$\mu = 0$ in MeV</td>
<td>$\mu = 0$ in MeV</td>
</tr>
</tbody>
</table>

Conclusion and outlook

Conclusion:

- Estimate of low-energy QCD model parameters from QCD RG-flows
- T-dependent model parameters alter the T-dependence of low-energy observables as well as the critical temperature
- Present results still show regulator dependence

Outlook:

- Compute T- and μ-dependence of the model parameters and employ them to study the phase diagram in the (T, μ) plane
- Fierz-complete ansatz for interactions in the NJL-model

References