

Contribution ID: 217

Type: Poster

dN_{charge} /deta and v_2 pseudorapidity dependence in ${}^{3}He$ +Au collisions at $\sqrt{s_{NN}}$ = 200 GeV with the PHENIX detector at RHIC

In small asymmetric collision systems such as ${}^{3}He$ +Au, precision measurements of the pseudorapidity dependence of the number of charged particles (N_{charge}) and the second order flow coefficient (v_2) have not been made. Nominally, v_2 is expected to be a monotonically decreasing function of rapidity from the Au going direction to the ${}^{3}He$ going direction. PHENIX's Silicon Vertex Detector (VTX) has a wide mid-pseudorapidity coverage (eta < |1.5|) which allows for the measurement of $dN_{charge}/deta$. When the VTX is coupled with information from PHENIX's forward detectors in the Au going direction, such as the MPC (-3.8 < eta < -3.1), a measurement of v_2 in several eta bins can be made.

This poster will present the latest status of analysis of the $dN_{charge}/deta$ and v_2 pseudorapidity dependence in ${}^{3}He$ +Au collisions at $\sqrt{s_{NN}}$ = 200 GeV with the PHENIX detector at RHIC. We will also show comparisons to hydrodynamic model calculations. We will also give the current status of similar analyses in p+Au and high multiplicity p+p collisions at 200 GeV.

On behalf of collaboration:

PHENIX

Primary author: KOBLESKY, Theodore (University of Colorado) **Presenter:** KOBLESKY, Theodore (University of Colorado)