In-medium quarkonium properties from a lattice QCD based effective field theory

Alexander Rothkopf
Institute for Theoretical Physics
Heidelberg University

in collaboration with S.Kim and P. Petreczky

References:
and work in progress
Motivation: Heavy-Ion Collisions
Motivation: Heavy-Ion Collisions

Our interest: probes susceptible to medium but distinguishable \(Q_{\text{probe}} > > T_{\text{med}} \)

Bound states of c\(\bar{c} \) or b\(\bar{b} \): Heavy quarkonium \(M_Q > > T_{\text{med}} \)
Motivation: Heavy-Ion Collisions

Our interest: probes susceptible to medium but distinguishable $Q_{\text{probe}} \gg T_{\text{med}}$

Bound states of $c\bar{c}$ or $b\bar{b}$: Heavy quarkonium $M_Q \gg T_{\text{med}}$

- In-medium quarkonium properties from a lattice QCD based EFT

Figure:
- CMS PbPb $\sqrt{s_{\text{NN}}} = 2.76$ TeV
- ALICE (|y|<0.9, 26% syst.), $\sqrt{s_{\text{NN}}} = 2.76$ TeV
- PHENIX (|y|<0.35, 12% syst.), $\sqrt{s_{\text{NN}}} = 0.2$ TeV

Graph:
- Mass($\mu^+\mu^-$) [GeV/c2] vs. Events/(0.1 GeV/c2)
- Data, total PbPb fit, background, pp shape (R$_{AA}$ scaled)

Graph:
- J/ψ mid-rapidity R_{AA} vs. N_{part}
- ALICE, PRL 109, 072301 (2012)
- PHENIX (|y|<0.35, 12% syst.), $\sqrt{s_{\text{NN}}} = 0.2$ TeV

Legend:
- ALICE (|y|<0.9, 26% syst.), $\sqrt{s_{\text{NN}}} = 2.76$ TeV
- PHENIX (|y|<0.35, 12% syst.), $\sqrt{s_{\text{NN}}} = 0.2$ TeV
Motivation: Heavy-Ion Collisions

- Our interest: probes susceptible to medium but distinguishable $Q_{\text{probe}} \gg T_{\text{med}}$
- Bound states of $c\bar{c}$ or $b\bar{b}$: Heavy quarkonium $M_Q > T_{\text{med}}$

Theory goal: 1^{st} principles insight into in-medium $Q\bar{Q}$ in heavy-ion collisions
Two limits for in-medium $Q\bar{Q}$

Static: Kinetically equilibrated heavy quarks

presence of in-medium bound eigenstates?

modern approach: LATTICE QCD meson spectra

compare also G. Aarts et. al.: JHEP 1407 (2014) 097
Two limits for in-medium $Q\bar{Q}$

Quarkonium as Open-Quantum System
see e.g. Y. Akamatsu, A.R. PRD85 (2012) 105011

Static: Kinetically equilibrated heavy quarks

presence of in-medium bound eigenstates?

modern approach: LATTICE QCD meson spectra

compare also G. Aarts et. al.: JHEP 1407 (2014) 097
Two limits for in-medium $Q\bar{Q}$

Quarkonium as Open-Quantum System
see e.g. Y. Akamatsu, A.R. PRD85 (2012) 105011

Static: Kinetically equilibrated heavy quarks

presence of in-medium bound eigenstates?

modern approach: LATTICE QCD meson spectra

compare also G. Aarts et. al.: JHEP 1407 (2014) 097
Two limits for in-medium Q̅Q

Quarkonium as Open-Quantum System
see e.g. Y. Akamatsu, A.R. PRD85 (2012) 105011

Static: Kinetically equilibrated heavy quarks
presence of in-medium bound eigenstates?

modern approach: LATTICE QCD meson spectra
compare also G. Aarts et. al.: JHEP 1407 (2014) 097

Dynamical: real-time approach to equilibrium
redistribution of states over time?

LATTICE QCD based potential description
see poster 0601 by Y. Akamatsu, A.R.
Two limits for in-medium $Q\bar{Q}$

Static: Kinetically equilibrated heavy quarks

Dynamical: Real-time approach to equilibrium

presence of in-medium bound eigenstates?

modern approach: LATTICE QCD meson spectra

Quarkonium as Open-Quantum System
see e.g. Y. Akamatsu, A.R., PRD85 (2012) 105011

compare also G. Aarts et al.: JHEP 1407 (2014) 097

LATTICE QCD based potential description

see poster 0601 by Y. Akamatsu, A.R.
Heavy quarks on the lattice

Relativistic treatment of light and heavy d.o.f.

Full Lattice QCD simulation incl. QQ (still too costly)
Heavy quarks on the lattice

Relativistic treatment of light and heavy d.o.f.

Full Lattice QCD simulation incl. Q̅Q (still too costly)

Lattice QCD simulation without Q̅Q

\[\frac{\Lambda_{QCD}}{m_Q} \ll 1 \]

\[\frac{T}{m_Q} \ll 1 \]
Heavy quarks on the lattice

Relativistic treatment of light and heavy d.o.f.

\[\frac{\Lambda_{\text{QCD}}}{m_Q} \ll 1 \]
\[\frac{T}{m_Q} \ll 1 \]

Full Lattice QCD simulation incl. Q\bar{Q} (still too costly)

Kin. eq. non-relativistic Q\bar{Q} in a background of light medium d.o.f.

Q\bar{Q} in NRQCD effective theory

Lattice QCD simulation without Q\bar{Q}
Heavy quarks on the lattice

Relativistic treatment of light and heavy d.o.f.

\begin{align*}
\frac{\Lambda_{\text{QCD}}}{m_Q} &\ll 1 \\
\frac{T}{m_Q} &\ll 1.
\end{align*}

Kin. eq. non-relativistic $Q\bar{Q}$ in a background of light medium d.o.f.

Q\bar{Q} in NRQCD effective theory

- Lattice Non-Relativistic QCD (NRQCD) well established at $T=0$, applicable at $T>0$
 - no modeling, systematic expansion of QCD action in $1/m_Q a$, includes $v\neq 0$ contributions
 - scale setting requires exp. input - -> successful in ab-initio predictions e.g. $m(\eta_b(2S))$
 Dowdall et. al., PRD85, 054509 (2012)
Heavy quarks on the lattice

Relativistic treatment of light and heavy d.o.f.

Kin. eq. non-relativistic $Q\bar{Q}$ in a background of light medium d.o.f.

- Lattice Non-Relativistic QCD (NRQCD) well established at $T=0$, applicable at $T>0$
 - no modeling, systematic expansion of QCD action in $1/m_Q a$, includes $v\neq 0$ contributions
 - scale setting requires exp. input - \rightarrow successful in ab-initio predictions e.g. $m(\eta_b(2S))$

- Recent progress: realistic simulations of the QCD medium by the HotQCD collab.
 - $m_\pi=161\text{MeV}$, $T= [140-249] \text{MeV}$, $m_b a= [2.759-1.559]$, $m_c a= [0.757-0.427]$
Correlation functions in NRQCD

Non-rel. propagator of a single heavy quark G

Correlation functions in NRQCD

Non-rel. propagator of a single heavy quark G

QQ propagator projected to a certain channel

„correlator of QQ wavefct.

$D_{J/\psi}(\tau) \triangleq \langle \psi_{J/\psi}(\tau)\psi_{J/\psi}^\dagger(0) \rangle$“

Brambilla et al. Rev. Mod. Phys. 77 (2005) 1423
Correlation functions in NRQCD

Non-rel. propagator of a single heavy quark G

QQ propagator projected to a certain channel

\[
D_{J/\psi}(\tau) \triangleq \langle \psi_{J/\psi}(\tau) \psi_{J/\psi}^\dagger(0) \rangle
\]
Brambilla et al. Rev.Mod.Phys. 77 (2005) 1423

Jpsi correlator at $T\approx 0$ for different lattice spacings
Correlation functions in NRQCD

Non-rel. propagator of a single heavy quark G

QQ propagator projected to a certain channel

„correlator of QQ wavefct. $D_{J/\psi}(\tau) \triangleq \langle \psi_{J/\psi}(\tau) \psi_{J/\psi}^\dagger(0) \rangle$“

Brambilla et al. Rev. Mod. Phys. 77 (2005) 1423

Ratio of $T>0$ and $T\approx 0$ correlators: estimate of overall in-medium effects

Jpsi correlator at $T\approx 0$ for different lattice spacings
Bayesian spectra in lattice NRQCD

Inversion of Laplace transform required to obtain spectra: Inherently Ill-defined
Bayesian spectra in lattice NRQCD

\[D_i = \sum_{l=1}^{N_\omega} \exp[-\omega_1 \tau_i] \rho_1 \Delta \omega_1 \]

1. \(N_\omega \) parameters \(\rho_1 >> N_\tau \) datapoints
2. Simulation data \(D_i \) has finite precision

Inversion of Laplace transform required to obtain spectra: Inherently ill-defined
Bayesian spectra in lattice NRQCD

\[D_i = \sum_{l=1}^{N_\omega} \exp[-\omega_l \tau_i] \rho_l \Delta \omega_l \]

1. \(N_\omega \) parameters \(\rho_l \gg N_\tau \) datapoints
2. Simulation data \(D_i \) has finite precision

- Inversion of Laplace transform required to obtain spectra: Inherently Ill-defined
- Give meaning to problem by incorporating prior knowledge: Bayesian approach
 - Bayes theorem: Regularize the naïve \(\chi^2 \) functional \(P[D|\rho] \) through a prior \(P[\rho|I] \)

\[P[\rho|D, I] \propto P[D|\rho] P[\rho|I] \]

Asakawa, Hatsuda, Nakahara, Prog.Part.Nucl.Phys. 46 (2001) 459
Bayesian spectra in lattice NRQCD

<table>
<thead>
<tr>
<th>β</th>
<th>$\beta=6.64$</th>
<th>$\beta=6.950$</th>
<th>$\beta=6.740$</th>
<th>$\beta=7.030$</th>
<th>$\beta=6.800$</th>
<th>$\beta=7.150$</th>
<th>$\beta=6.880$</th>
<th>$\beta=7.280$</th>
</tr>
</thead>
</table>

Equation:

$$D_i = \sum_{l=1}^{N_\omega} \exp[-\omega_l \tau_i] \rho_l \Delta \omega_l$$

Notes:

1. N_ω parameters ρ_l \gg N_τ datapoints
2. Simulation data D_i has finite precision

Inversion of Laplace transform required to obtain spectra: Inherently Ill-defined

Give meaning to problem by incorporating prior knowledge: Bayesian approach

- **Bayes theorem:** Regularize the naïve χ^2 functional $P[D|\rho]$ through a prior $P[\rho|I]$

$$P[\rho|D, I] \propto P[D|\rho] P[\rho|I]$$

Recent progress: Regulator that remedies flat directions issue in Maximum Entropy Method

$$P[\rho|I] \propto e^S \quad S = \alpha \sum_{l=1}^{N_\omega} \Delta \omega_l \left(1 - \frac{\rho_l}{m_l} + \log \left[\frac{\rho_l}{m_l}\right]\right)$$

References:

- Asakawa, Hatsuda, Nakahara, Prog.Part.Nucl.Phys. 46 (2001) 459
- Y.Burnier, A.R. PRL 111 (2013) 18, 182003

The XXVth Int. Conference on Ultrarelativistic Nucleus-Nucleus Collisions QM2015 - September 29th 2015
Bayesian spectra at $T=0$

$m_{J/\psi}$ from PDG calibrates freq. scale

$\beta=6.664$ – $\beta=7.280$
Bayesian spectra at $T=0$

- $m_{J/\Psi}$ from PDG calibrates freq. scale

- Check systematic error of lattice computation by postdiction of P-wave ground state mass
Bayesian spectra at $T=0$

$m_{J/\psi}$ from PDG calibrates freq. scale

- Check systematic error of lattice computation by postdiction of P-wave ground state mass

$$M_{\chi_{c1}} = 3.546(4)\text{GeV} \quad M_{\chi_{c1}}^{\text{exp}} = 3.51066(7)\text{GeV}$$
Bayesian spectra at T=0

$\beta=6.664$ $\beta=6.950$
$\beta=6.740$ $\beta=7.030$
$\beta=6.800$ $\beta=7.150$
$\beta=6.880$ $\beta=7.280$

$m_{J/\Psi}$ from PDG calibrates freq. scale

Check systematic error of lattice computation by postdiction of P-wave ground state mass

$M_{\chi_{c1}} = 3.546(4)\text{GeV}$ $M_{\chi_{c1}}^{\text{exp}} = 3.51066(7)\text{GeV}$

$M_{\chi_{b1}} = 9.917(3)\text{GeV}$ $M_{\chi_{b1}}^{\text{exp}} = 9.89278(3)\text{GeV}$
High precision of the improved Bayesian reconstruction (narrow width resolved)

How does accuracy suffer from limited available information at $T>0$ ($N_\tau=12$) ?

One of the tests we ran: truncate $T=0$ dataset ($N_\tau=32/64$) to $N_\tau=12$

A benchmark for $T>0$ spectra
A benchmark for T>0 spectra

- High precision of the improved Bayesian reconstruction (narrow width resolved)
- How does accuracy suffer from limited available information at T>0 ($N_\tau=12$)?
- One of the tests we ran: truncate T=0 dataset ($N_\tau=32/64$) to $N_\tau=12$

Example: limits for Upsilon

- $\beta = 6.664$: $\Delta m_T < 2\text{MeV}$, $\Delta \Gamma_T < 5\text{MeV}$
- $\beta = 7.280$: $\Delta m_T < 40\text{MeV}$, $\Delta \Gamma_T < 21\text{MeV}$
Finite temperature results
Sequential in-medium modification

$E_{\text{bind}}^{T=0} \approx 1.1 \text{ GeV}$
Sequential in-medium modification

\[E_{\text{bind}}^{T=0} \approx 1.1 \text{Gev} \]

max 1% for Υ

The XXVth Int. Conference on Ultrarelativistic Nucleus-Nucleus Collisions QM2015 - September 29th 2015
Sequential in-medium modification

\[E_{\text{bind}}^{T=0} \approx 1.1 \text{Gev} \]

\[\text{max } 1\% \text{ for } \gamma \]

Characteristic non-monotonicity
Sequential in-medium modification

\[E_{\text{bind}}^{T=0} \approx 1.1 \text{GeV} \]

\[E_{\text{bind}}^{T=0} \approx 640 \text{MeV} \]

characteristic non-monotonicity

max 1% for \(\Upsilon \)
Sequential in-medium modification

$$E_{\text{bind}}^{T=0} \approx 1.1\text{Gev}$$

$$E_{\text{bind}}^{T=0} \approx 640\text{MeV}$$

characteristic non-monotonicity

max 1% for γ

max 5% for χ_{b1}
Sequential in-medium modification

\[E_{\text{bind}}^{T=0} \approx 1.1 \text{ GeV} \]

\[E_{\text{bind}}^{T=0} \approx 640 \text{ MeV} \]

- \(\Upsilon \) Correlator ratio
- \(\chi_{b1} \) Correlator ratio
- \(J/\psi \) Correlator ratio

- Characteristic non-monotonicity

max 1% for \(\Upsilon \)

max 5% for \(\chi_{b1} \)
Sequential in-medium modification

\[E^T=0_{\text{bind}} \approx 1.1\text{Gev} \]

- \[\text{max 1\% for } \Upsilon \]

\[E^T=0_{\text{bind}} \approx 640\text{MeV} \]

- \[\text{max 5\% for } \chi_{b1} \]

- \[\text{max 5\% for } J/\psi \]

characteristic non-monotonicity
Sequential in-medium modification

\(E_{\text{bind}}^{T=0} \approx 1.1 \text{ Gev} \)

\(E_{\text{bind}}^{T=0} \approx 640 \text{ MeV} \)

\(E_{\text{bind}}^{T=0} \approx 200 \text{ MeV} \)

Characteristic non-monotonicity

max 1% for \(\Upsilon \)

max 5% for \(\chi_{b1} \)

max 5% for \(J/\psi \)

I\(N \) - MEDIUM QUARKONIUM PROPERTIES FROM A LATTICE QCD BASED EFT
Sequential in-medium modification

\[E_{\text{bind}}^{T=0} \approx 1.1 \text{GeV} \]

\[E_{\text{bind}}^{T=0} \approx 640 \text{MeV} \]

\[E_{\text{bind}}^{T=0} \approx 200 \text{MeV} \]

max 1% for \(\Upsilon \)

max 5% for \(\chi_{b1} \)

max 12% for \(\chi_{c1} \)

characteristic non-monotonicity
Interpreting lattice correlator ratios
Interpreting lattice correlator ratios

- Use a phenomenological spectrum to compute correlator ratios
Interpreting lattice correlator ratios

Use a phenomenological spectrum to compute correlator ratios

from poster 0021 by Y. Burnier, A.R.

Y. Burnier, O. Kaczmarek, A.R.

arXiv:1509.07366
Interpreting lattice correlator ratios

- Use a phenomenological spectrum to compute correlator ratios

Potential based spectra qualitatively reproduce the T-dependence of the correlator ratio.

From poster 0021 by Y. Burnier, A.R.
Interpreting lattice correlator ratios

Use a phenomenological spectrum to compute correlator ratios

Potential based spectra qualitatively reproduce the T-dependence of the correlator ratio.
Bayesian lattice spectra at $T>0$

- NRQCD Bottomonium S-wave and P-wave spectra between $T=140\text{ - }249\text{MeV}$
Bayesian lattice spectra at $T>0$

- NRQCD Bottomonium S-wave and P-wave spectra between $T = 140 - 249$ MeV
Bayesian lattice spectra at $T>0$

- NRQCD Bottomonium S-wave and P-wave spectra between $T=140$ - 249MeV

- S-wave ground state peak present up to $T=249\text{MeV}$
Bayesian lattice spectra at $T>0$

- NRQCD Bottomonium S-wave and P-wave spectra between $T=140$ - 249 MeV

- S-wave ground state peak present up to $T=249$ MeV

- Naïve inspection by eye fails for P-wave: first vs. second peaked structure
A systematic definition of survival

Our strategy: systematic comparison to non-interacting spectra
A systematic definition of survival

Our strategy: systematic comparison to non-interacting spectra

Analytically known, no peaked features

\[
a_T E_p = -\log \left(1 - \frac{p_{\text{lat}}^2}{8 M_b \alpha_s} \right)
\]

\[
\rho_S(\omega) = \frac{4\pi N_c}{N_s^2} \sum_p \delta(\omega - 2E_p)
\]

G. Aarts et. al., JHEP 1111 (2011) 103
A systematic definition of survival

- **Our strategy:** systematic comparison to non-interacting spectra

 - **Analytically** known, no peaked features
 - **Numerically:** Reconstruct from free NRQCD ($U_\mu = 1$)

 - Expectation: Presence of wiggly features due to numerical **Gibbs ringing**

\[
\alpha_T E_p = -\log \left(1 - \frac{p^2_{\text{lat}}}{8M_b \alpha_s} \right)
\]

\[
\rho_S(\omega) = \frac{4\pi N_c}{N_s^2} \sum_p \delta(\omega - 2E_p)
\]

G.Aarts et al., JHEP 1111 (2011) 103
A systematic definition of survival

- Our strategy: systematic comparison to non-interacting spectra

 Analytically known, no peaked features

 Numerically: Reconstruct from free NRQCD ($U_\mu = 1$)

- Expectation: Presence of wiggly features due to numerical Gibbs ringing

\[
\alpha_T E_p = -\log \left(1 - \frac{p_{\text{lat}}^2}{8M_b a_s} \right)
\]

\[
\rho_S(\omega) = \frac{4\pi N_c}{N_s^2} \sum_p \delta(\omega - 2E_p)
\]

G. Aarts et al., JHEP 1111 (2011) 103

\(\Upsilon(1S) \) signal survives at \(T=249 \text{MeV} \)
A systematic definition of survival

- Our strategy: systematic comparison to non-interacting spectra

 Analytically known, no peaked features

 Numerically: Reconstruct from free NRQCD ($U_\mu=1$)

- Expectation: Presence of wiggly features due to numerical Gibbs ringing

$$\rho_S(\omega) = \frac{4\pi N_c}{N_s^2} \sum_p \delta(\omega - 2E_p)$$

$$a_T E_p = -\log \left(1 - \frac{p_{\text{lat}}^2}{8M_b a_s} \right)$$

G. Aarts et al., JHEP 1111 (2011) 103

$\Upsilon(1S)$ signal survives at $T=249\text{MeV}$

$\Upsilon(1S)$ signal survives at $T=249\text{MeV}$
A systematic definition of survival

- **Our strategy:** systematic comparison to non-interacting spectra

 - **Analytically** known, no peaked features
 - **Numerically:** Reconstruct from free NRQCD ($U_\mu = 1$)

- Expectation: Presence of wiggly features due to numerical **Gibbs ringing**

\[
\alpha_T E_p = -\log \left(1 - \frac{p_{\text{lat}}^2}{8 M_b \alpha_s} \right)
\]

\[
\rho_S(\omega) = \frac{4\pi N_c}{N_s^2} \sum_p \delta(\omega - 2E_p)
\]

G. Aarts et al., JHEP 1111 (2011) 103

![Upsilon (1S) signal survives at $T=249\text{MeV}$](image)

![Charm-anticharm (1P) signal survives at $T=249\text{MeV}$](image)
A systematic definition of survival

- **Our strategy:** systematic comparison to non-interacting spectra

 - **Analytically** known, no peaked features
 - **Numerically:** Reconstruct from free NRQCD ($U_{\mu}=1$)

- **Expectation:** Presence of wiggly features due to numerical **Gibbs ringing**

\[
\alpha_T E_p = -\log\left(1 - \frac{p_{\text{lat}}^2}{8M_b a_s}\right)
\]

\[
\rho_S(\omega) = \frac{4\pi N_c}{N_s^2} \sum_p \delta(\omega - 2E_p)
\]

G. Aarts et. al., JHEP 1111 (2011) 103

Graphs:

- **$\Upsilon(1S)$ signal survives at $T=249$ MeV**
 - Ground state ringing ≈ 10

- **$\chi_b(1P)$ signal survives at $T=249$ MeV**
 - Ground state ringing ≈ 3

- **J/ψ signal survives at $T=249$ MeV**
 - Ground state ringing ≈ 3
Conclusions

- Heavy quarkonium represents a precision probe of QCD at T>0
- Combining established EFT methods (NRQCD) and lattice QCD at T>0
 - **Progress I:** Realistic simulations of the QCD medium close to physical point (HotQCD)
 - **Progress II:** Improved Bayesian spectral reconstruction method available
- In-medium results for Quarkonium in lattice NRQCD:
 - **Sequential** in-medium **modification** of correlators according to vacuum E_{bind}
 - In-medium correlator behavior compatible with sequential peak melting
 - Comparison of free and interacting spectra disentangles ringing from bound state
 - **Survival** of the **bound state signal** at $T=249\text{MeV}$ for $\Upsilon(1S)$, $\chi_b(1P)$ and $J/\psi(1S)$
Conclusions

- Heavy quarkonium represents a precision probe of QCD at T>0
- Combining established EFT methods (NRQCD) and lattice QCD at T>0
 - **Progress I**: Realistic simulations of the QCD medium close to physical point (HotQCD)
 - **Progress II**: Improved Bayesian spectral reconstruction method available
- In-medium results for Quarkonium in lattice NRQCD:
 - **Sequential** in-medium modification of correlators according to vacuum E_{bind}
 - In-medium correlator behavior compatible with sequential peak melting
 - Comparison of free and interacting spectra disentangles ringing from bound state
 - **Survival** of the bound state signal at T=249MeV for $\Upsilon(1S)$, $\chi_b(1P)$ and $J/\psi(1S)$

Thank you for your attention
ご清聴ありがとうございました。