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UNFOLDING METHOD J CORRELATIONS BETWEEN PARENT CHARM AND BOTTOM HADRON YIELDS
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the datasets Y92t and {D}iata} fily is then evaluated using PT PT
5 Figure 2: The joint probability distributions for the vector of hadron yields, 0, showing the 2-dimensional correlations between parameters. The diagonal plots show
. data dataiy. the marginalized probability distributions for each hadron pr bin (i.e. the 1 dimensional projection over all other parameters). Along the Y-axis the plots are organized
InP(x|0) = In P(Y Y(0)) + Z In P(Dj ‘D] (9)). () from top to bottom as the 17 charm hadron pr (p5) bins from low to high p followed by the 17 bottom hadron pr (p%) bins from low to high p%. The X-axis is organized
=1 similarly from left to right. The p$ and p% binning follows that shown in Fig. 5. The region of green (blue) plots shows the correlations between charm (bottom) hadron

yields. The region of orange plots shows the correlations between charm and bottom hadron yields. A circular contour in the 2-dimensional panels represents no
correlation between the corresponding hadron pr bins. An oval shape with a positive slope indicates a positive correlation between corresponding bins, and an oval

The likelihood In P(Y92t|Y(0)) is modeled as a multivariate

Gaussian with diagonal covariance. The likelihood shape with a negative slope represents an anti-correlation between corresponding bins. Sub-panels (b)-(d) show a set of example distributions.
In P(D;.iatalD]-(e)) is described by a multivariate Poisson
distribution, as the DCA7 data is in counts. A large positive correlation is seen for adjacent bins in Fig. 2 for high-pT charm hadrons and low-pr bottom hadrons. This is a consequence

of the regularization, which requires a smooth pr distribution, and is stronger where there is less constraint from the data. There is also a
DECAY MODEL AND MATRIX NORMALIZATION region of anti-correlation between the mid to high pr charm hadrons and the low to mid p bottom hadrons. Charm and bottom hadrons in
. these regions contribute decay electrons in the same p region, and appear to compensate for each other to some extent.
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Figure 1: (a) The decay matrix, MY, encoding the probability for charmed

) o ) Figure 3: The heavy flavor electron
hadrons decaying to electrons within [n| < 0.35 as a function of both p% and charm

D) invariant yield as a function of pr [3]
hadron pr (p7). (b) An example decay matrix, M; ™, encoding the probability for compared to electrons from the re-folded

charmed hadrons decaying to electrons within |T]| < 0.35and charm and bottom hadron y1e1ds
1.5 < p% [GeV/c] < 2.0 as a function of both electron DCAT and p¥.

Figure 4: The DCA7 distribution for measured electrons compared to the decomposed DCAT distributions for background
components, electrons from charm decays, and electrons from bottom decays. The gray band indicates the region in DCA7
considered in the unfolding procedure. See Ref. [1] for all DCAT comparisons.
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where R- and R.. are ratios of the charm and bottom components of Figure 5: Unfolded charm and bottom hadron invariant yield as a function of g : - Pr p
the par flt hadr bn tor to th - ndine 17 mp nent pr, integrated over all rapidities, as constrained by electron yield vs DCAr in5py ~ measurements in p+p collisions at /s =200 GeV from PHENIX [5] and STAR [6],
€ pare on pr vector 1o the Correspo g 1/ components bins and previously published heavy flavor electron invariant yield vs pr [3]. as well as the central values for FONLL [7] for p+p collisions at /s =200 GeV.

of the prior, Opyior, and L is a 17-by-17 second-order
finite-difference matrix. Thus the addition of this term encodes the | Also see posters by T. HACHIYA, H. ASANO, and K. NAGASHIMA.
assumption that departures from 6o, should be smooth by
penalizing total curvature as measured by the second derivative. ACKNOWLEDGMENTS
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