

The RICH detector for the CBM experiment at FAIR

C. Höhne for the CBM collaboration Justus-Liebig-University Giessen, Germany, and GSI, Darmstadt, Germany

Claudia Hoehne@physik.uni-giessen.de

Compressed Baryonic Matter @ FAIR – high μ_B , moderate T

phase diagram at high µ_B ?

- quarkyonic phase?
- phase transition(s)?
- critical point/ triple point?
- · need for high precision data including rare probes

Electromagnetic probes!

- Photons: access to early temperatures
- Low-mass vector mesons: inmedium properties of ρ-meson
- Intermediate range: acces to
- fireball radiation J/ψ: charm as a probe for
- dense baryonic matter

H12700 MAPMT,

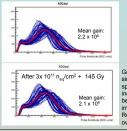
need: ~ 2-40 AGeV beam energies at high intensities

Field driven by experimental data!

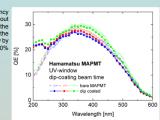
Concept of the CBM RICH detector

Ring Imaging CHerenkov detector for electron identification (p<8GeV/c):

- · Gaseous RICH detector for electron identification
- CO₂ as radiator gas (p_{π,th}=4.65 GeV/c)
- 2 photodetector planes (MAPMTs, Hamamatsu H12700) with approx. 55.000 channels
- 2 large spherical mirrors (R=3m) as focussing optics, Al+MgF₂ reflective coating
- Vertical splitting of RICH geometry because CBM dipole magnet is located in front of the RICH (photodetector planes shielded by magnet yoke; particle tracks horizontally spreadened

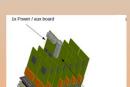

CBM-RICH collaboration:

University Giessen, University Wuppertal, GSI, PNPI Gatchina St. Petersburg, ITEP Moscow, Pusan National University, JINR-LIT Dubna


Photodetector

- Hamamatsu H12700 MAPMT has been selected after extensive R&D phase:
- Pixel resolution
- Single photon response 🗸
- Quantum efficiency
 Radiation hardness, activation
- Enhanced Q.E. with WLS coverage* ✓

Quantum efficiency with and without WLS coverage; the latter increases the final hit multiplicity by up to 20%


Gain normalized single photon spectra of all individual pixels before and after

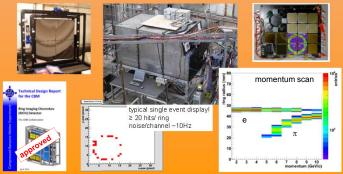
supercurrent Baryon Chemical Potential µti

Readout electronics

- Development of DiRICH board: combine PADIWA* functionality (discrimination) and TRB* (TDC, data handling) on a single board: joint development of PANDA-DIRC, CBM-RICH and HADES-RICH
- make use of new Lattice ECP5-85F FPGA: 32 channels ToT, ~10ps precision TDC 3x2 MAPMT readout module with 2 DiRICH boards.
- per MAPMT, data combiner module, Power board:
- small units for flexible photodetector setup Gas tight mounting on carrier plane (steel) resembling shape of focal plane

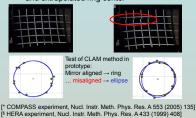
Sketch of later

Nucl. Instr. Meth. A783 (2015) 43.]


TRBRICH module, a predecessor of the DiRICH board

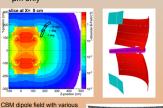
[* A. Neiser et al., JINST 8 (2013) C12043]

CBM RICH prototype tests


- Real dimension prototype succesfully tested in mixed e- μ - π testbeam at CERN PS from 2-10 GeV, autumn 2011, 2012, 2014
- Investigate various photosensors, WLS coverage, electronics developments, gas system and required gas purity, mirror misalignment limits, mirror alignment controls

Mirror and mirror alignment control

- SIMAX glass mirrors, tickness 6mm, R=3m, Al+MgF $_2$ coverage from JLO Olomouc high reflectivity; very good surface homogeneity (D $_0$ =2-3 mm: diameter of the reflected spot from a point source which contains 95% of the light intensity)
- Development of mirror alignment control system:
 - CLAM* method: retroreflective grid at entrance, illuminated by LED, reflection seen via mirror
 - · Method based on online and offline data analysis comparing fitted and extrapolated ring centers

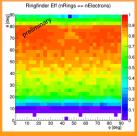


Reflectivity [%] -D-Flabeg (CERN)
-O-A. Braem (CERN)
-Flabeg (WU)
-Compas (WU)
-JLO (WU)
-JLO (JLO) 60 300 Wavelength λ. [nm]

RICH geometry optimization and technical design

- Tilt mirrors by 10° in order to move photodetector outwards of magnetic stray field of CBM dipole magnet (and into less radiation hard environment): optimization of position and segmentation of photodetector plane
- Still need to add shielding boxes in order to reduce the field to 1 mT in the photocathode plane
 - Optimize mirror mounting structure to reduce the material budget in the detector volume while keeping high mechanical stability: prototypes built, measured deviations are a few

Prototype of mirror wall with mirror mounting scheme use three point mount for mirror tiles in order to reduce material budget



Upgrade of HADES RICH detector

- HADES RICH successfully in operation since more than 10 years
- In cooperation with TU Munich: Replace existing CsI photocathode with MAPMTs from CBM in order to significantly enhance the e+/e- identification capability
- Be ready asap for next HADES π +A, A+A beamtime at GSI
- \rightarrow Data taking and physics analysis: checks performance of MAPMTs, electronics, ring finding and calibration routines for CBM

RICH geometry with 10° tilt of mirrors

