Photon flow harmonics v_n with chemical equilibration and non-ideal gas distribution

Akihiko Monnai
RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA

Abstract

Elliptic and triangular flow of direct photons are experimentally found to be larger than those of hydrodynamic estimations, which is recognized as “photon puzzle”. I show numerically that (i) late quark chemical equilibration and (ii) in-medium corrections of parton distributions lead to suppression of early photons and to enhancement of photon anisotropy.

1. Introduction

Direct photon v_n are larger than hydro calculations: “photon puzzle”

2. Quark chemical equilibration

Chemical equilibration can take longer than thermalization

3. In-medium effective distributions

The QGP is not an ideal gas

4. Numerical analyses

By direct photon v_n, v_2 is enhanced

5. Summary and outlook

Chemical equilibration and in-medium corrections to parton distribution would be important for understanding the “photon puzzle”

Future prospects include estimation of prompt photons and introduction of chemically non-equilibrated equation of state (Ch. Galis et al., JPG 30, S1033)