Overview of Recent Heavy-lon Results from CMS

Byungsik Hong (Korea University)

for the CMS Collaboration

Quark Matter Conference, Kobe, Japan 27 September - 3 October, 2015

Quark Matter 2015, Kobe

Outline of CMS in QM2015

Physics	Topics	Talks/Posters
Global observable, collectivity and fluctuation	Transverse-energy flow in pPb	M. Murray
	Multi-particle correlation in pPb	Q. Wang
	Long-range correlation in high-multiplicity pp events	Z. Chen
	Ridges in pp, pPb and PbPb	S. Padula (Poster)
	K_S^0 , Λ , and Ξ in pp, pPb and PbPb	H. Ni
	Multiplicity dependence of Ξ in pp, pPb and PbPb	Z. Tu (Poster)
	Longitudinal fluctuation in PbPb and pPb	M. Guilbaud
	PCA of two-particle correlations in PbPb and pPb	J. Milosevic
Production mechanism and initial state effect (nPDF)	Jet fragmentation in pPb	A. A. Baty
	J/ψ in pPb and PbPb	Y. Kim
	B in pPb	K. Lee (Poster)
	W and Z productions in pp, pPb and PbPb	E. Chapon

Outline of CMS in QM2015

Physics	Торіся	Talks/Posters
Final state effect (Energy loss and melting)	Missing p_T analysis in PbPb	C. McGinn
	Energy balance of the quenched jets in PbPb	O. Evdokimov
	Nuclear modification of jets in PbPb and pPb	R. K. Elayavalli (Poster)
	Υ in PbPb and pPb	M. Jo
	Open heavy flavors in PbPb and pPb	J. Sun
	D in PbPb	YJ. Lee (Poster)
	Heavy-flavored jets in PbPb and pPb	K. E. Jung (Poster)

- Since QM2014,
 - New results on the LR correlation in pp, E_T -flow, c-jet, D, Ξ , etc.
 - Better understanding on collectivity, fluctuation and jet with more sophisticated analyses
 - Improved Υ and Z data with more statistics and refined analyses
 - More information on the cold nuclear matter effect using quarkonia and electroweak probes in pPb

New release or update in QM2015

List of CMS Physics Analysis Summary

- HIN-14-004: *B* in pPb
- HIN-14-009: J/ψ in pPb
- HIN-14-010: Missing p_T
- HIN-14-012: Longitudinal fluctuation in PbPb and pPb
- HIN-14-014: Energy flow in pPb
- HIN-14-016: Jet-track correlations
- FSQ-15-001: $dN/d\eta$ in pp @ 13 TeV
- FSQ-15-002: Ridge in pp @ 13 TeV
- HIN-15-001: Υ(*nS*) in PbPb

- HIN-15-002: *Z* in pPb
- HIN-15-004: Frag. function in pPb
- HIN-15-005: *D* in PbPb
- HIN-15-006: Strangeness in pPb
- HIN-15-008: Differential v_n
- HIN-15-009: v_2 and v_3 in pp
- HIN-15-010: PCA for v_2 and v_3
- HIN-15-011: Jet energy balance
- HIN-15-012: *c*-jet in pPb

Public CMS HI results are available at

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN

Heavy-ion oriented data samples

Period	System	Energy (TeV)	Rec. Lumi.	Comments
2010	p+p	7	6.2 nb ⁻¹	Low pile-up
2010	Pb+Pb	2.76	7 µb⁻¹	Similar N _{coll} -scaled luminosities for pp, pPb, and PbPb: As many Z's and W's for each collision system
2011	Pb+Pb	2.76	150 μb ⁻¹	
2011	p+p	2.76	230 nb ⁻¹	
2013	p+Pb	5.02	35 nb ⁻¹	
2013	p+p	2.76	5.4 pb ⁻¹	
2015	p+p	13	270 nb⁻¹	Low pile-up

CMS ION LUMINOSITY 2011 and 2010

CMS Integrated Luminosity, pPb, 2013, $\sqrt{s}=$ 5.02 TeV/nucleon

5

Global observables, collectivity in small systems and fluctuations

Quark Matter 2015, Kobe

Charged hadron multiplicity in pp @ 13 TeV

CMS-FSQ-15-001, arXiv:1507.05915

- First LHC RUN II paper on hadron production in pp collisions at 13 TeV
- $\left[\frac{dN_{ch}}{d\eta}\right]_{|\eta|<0.5} = 5.49 \pm 0.01(\text{stat}) + 0.17(\text{syst})$ for inelastic events
- Energy dependence well described by a second-order polynomial in ln(s)
- New constraints for various event generators

Transverse-energy flow in pPb

M. Murray

CMS-HIN-14-014

- $\frac{1}{N_{evt}} \left[\frac{dE_T}{d\eta} \right]_{\eta=0} \approx 23 \text{ GeV for Min. bias pPb} \sim 1/90 \text{ of } 0-2.5\% \text{ PbPb}$
- Geometrical cross-sectional area in pPb ~1/50 of central PbPb
 - Local energy density in Min. bias pPb is about 5/9 of that in 0-2.5% PbPb.
- $\left(\frac{dE_T}{d\eta}\right) / \left(\frac{N_{part}}{2}\right) \sim 5.8 \text{ GeV: Min. bias pPb@5.02 TeV} > 70\% \text{ PbPb@2.76 TeV}$

Quark Matter 2015, Kobe

Flow harmonics v_n in pPb

- η -dependence of v_2 taking into account the event plane (EP) decorrelation effect
- $v_2\{EP\}$ analysis extended from 3 to 6 GeV/c in p_T

- Considering the event-plane (EP) decorrelation effect, the difference of v_2 between Pb-going side and p-going side is reduced.
- $v_2\{EP\}$ in Pb-going side $\approx v_2\{EP\}$ in p-going side for $p_T \leq 3$ GeV/c

Quark Matter 2015, Kobe

9

CMS-HIN-15-008

Q. Wang

Flow harmonics v_n in pPb & PbPb

2-D correlations in high-mult. pp

Long-range correlations in high-mult. pp

 $0.15 \qquad \text{CMS pp } \sqrt{s} = 7 \text{ TeV} \qquad \text{K}_{s}^{0} \qquad \text{A}/\overline{\Lambda} \qquad \text{h}^{\pm} \qquad$

Z. Chen

- $v_2(pp) < v_2(pPb) < v_2(PbPb)$ • $v_3(pp) \approx v_3(pPb) \approx v_3(PbPb)$, but $v_3(pp)$ deviates for $N_{trk}^{offline} \gtrsim 90$
- Mass ordering for $v_2^{sub}\{2\}$ at low p_T

Quark Matter 2015, Kobe

12

CMS-HIN-15-009

Strangeness production in pp, pPb & PbPb

 Λ/K_S^0 ratio shows larger difference between high & low multiplicity events in smaller system at low p_T .

CMS-HIN-15-006

Heavier particle increases faster with track multiplicity, especially, for smaller collision system: Stronger radial flow velocity.

Byungsik Hong

Quark Matter 2015, Kobe

PCA for factorization breakdown

II. Modification of jets

Byungsik Hong

Momentum flow in dijet events in PbPb

Jet fragmentation function in pPb

A. Baty

CMS-HIN-15-004

- No modification of jet fragmentation function in pPb with respect to the interpolated pp reference
- Without modification in R_{pPb} and D_{pPb}, the observed PbPb modification can be attributed to the final-state hot nuclear matter effect.

Momentum flow in dijet events in PbPb

- $\langle p_T^{||} \rangle$ from high- p_T particles increases with A_J in the leading-jet direction.
 - pp: balanced by 2-8 GeV/c particles in the sub-leading-jet direction
 - Central PbPb: balanced by softer particles with p_T < 2 GeV/c

Momentum flow in dijet events in PbPb

Jet-track # correlation function in PbPb

- Yield differences between PbPb and pp increase from peripheral to central collisions.
- The excess yield extends significantly to large $\Delta \phi$ (and also $\Delta \eta$).
- The excess yield exists for both peaks, but is more pronounced on the subleading-jet side at low p_T, and diminishes at high p_T.

Byungsik Hong

Decomposing energy balance contribution

O. Evdokimov CMS-HIN-15-011

Analysis for separate contributions by jet peaks and LR components

- Dijet p_T analysis
 - Low- p_T enhancement and high- p_T depletion for both sides
 - Larger effects for subleading jet in central events
- Double difference recovers only part of total hemisphere momentum difference
- The rest of momentum difference comes from longrange asymmetry component.

Decomposing energy balance contribution

Jet-peak p_T difference (Central PbPb - pp) Subleading and leading jet modifications

Total p_T difference (Central PbPb - pp) Total jet and LR asymmetry contributions

- Jet peak modifications in $p_T < 3$ GeV/c for both leading and subleading jets
- Long-range asymmetry more enhanced at low p_T and more suppressed at high p_T in PbPb relative to pp

III. Open heavy flavors

Byungsik Hong

B feed-down subtracted

J. Sun, Y.-J. Lee (Poster) CMS-HIN-15-005

B feed-down subtracted

CMS-HIN-15-005

B feed-down subtracted

J. Sun CMS-HIN-15-005

B feed-down subtracted

- Prompt D⁰ in PbPb suppressed relative to FONLL based extrapolation
- Tendency to smaller suppression for increasing p_T in $p_T \gtrsim 11$ GeV/c

- Prompt D^0 in PbPb suppressed relative to FONLL based extrapolation
- Tendency to smaller suppression for increasing p_T in $p_T \gtrsim 11$ GeV/c
- Prompt D^0 suppressed more than non-prompt J/ψ from B

*≴

B production in pPb

K. Lee (Poster)

CMS-HIN-14-004, arXiv:1508.06678

- B analysis in pPb
 - No modification for B^{\pm} , B^{0} , B_{S}^{0} within uncertainties
 - Baseline for PbPb
- CMS capability to reconstruct B in PbPb
 - First fully reconstructed *B* in PbPb environment
 - Expect \sim 20 times more statistics in RUN II due to higher luminosity and energy increase

29

CMS detector performance plot

(2011 PbPb data at 2.76 TeV)

c-jet in pp and pPb

- First measurement of *c*-tagged jets in heavy-ion environment
- *c*-jet p_T spectra are consistent with PYTHIA in pp and pPb
 - (pPb) 1.00 ± 0.19 , (pp) 1.15 ± 0.27
 - No significant modification in pPb relative to PYTHIA

Summary of heavy-flavor production

IV. Quarkonia & electroweak bosons

Byungsik Hong

Prompt J/ ψ production in pPb

- $R_{FB}(\text{prompt } J/\psi) < 1$ at low p_T with little rapidity dependence
- $R_{FB}(\text{prompt } J/\psi)$ decreases with event activity
 - $E_T^{HF |\eta|>4}$: Transverse energy measured in forward (4 < $|\eta|$ < 5.2)

W and Z productions

E. Chapon CM

CMS-HIN-15-002

- Electroweak bosons are well calibrated particles in pp.
- Standard candle: No final-state modification in PbPb -
- Probing nPDF for q and \overline{q} in pPb:

W and Z production in pPb

- Electroweak bosons favor the nuclear modification of PDF.
- Large statistical uncertainties yet prevent distinction among different nPDFs.

$\boldsymbol{\Upsilon}$ production in PbPb

New data with 20 times more pp data

• Centrality integrated results: Υ states suppressed sequentially (0-100%) $R_{AA}[\Upsilon(1S)] = 0.425 \pm 0.029 \pm 0.070$ $R_{AA}[\Upsilon(2S)] = 0.116 \pm 0.028 \pm 0.022$ $R_{AA}[\Upsilon(3S)] < 0.14$ at 95% CL

Υ suppression does not strongly depend on kinematics.

Conclusions

- Energy flow
 - Energy density is compatible in pPb and PbPb
- Collective flow
 - Finite v_2 and v_3 in high-multiplicity pp events
 - Stronger radial flow in smaller system
 - PCA quantifies the factorization breakdown for fluctuations in PbPb and pPb.
- Jet and energy loss
 - No modification in the jet fragmentation function in pPb
 - Low- p_T excess of jet tracks in subleading jet side extended to large angles
 - Suppression of prompt D^0 is larger than that for non-prompt J/ψ from B
- Quarkonia & EW probes
 - Forward-backward ratio of J/ψ decreases at low p_T .
 - Z's (and W's) in pPb support modification of nPDF
 - Υ suppression does not strongly depend on kinematics.
- CMS will be ready to take ×10 more heavy-ion events in RUN II.
 - Critical to increase the statistics particularly for the rarest QGP probes

