Nonlinear hydrodynamic response confronts LHC data

Li Yan

CNRS, Institut de Physique Théorique, Saclay

Sep. 28, 2015, Quark Matter 2015

with Subrata Pal and Jean-Yves Ollitrault

• PLB744 (2015) 82-87 • Work in progress

• Harmonic flow and azimuthal anisotropy of event-by-event spectrum,

$$
\frac{dN}{d\phi_p} \sim \sum_n V_n e^{-in\phi_p} \quad \Longleftrightarrow \quad V_n = v_n e^{in\Psi_n} = \langle e^{in\phi_p} \rangle \quad (complex \, !)
$$

• Harmonic flow and azimuthal anisotropy of event-by-event spectrum,

$$
\frac{dN}{d\phi_p} \sim \sum_n V_n e^{-in\phi_p} \quad \Longleftrightarrow \quad V_n = v_n e^{in\Psi_n} = \langle e^{in\phi_p} \rangle \quad (complex!)
$$

Azimuthal symmetry of V_n : $\phi_p \rightarrow \phi_p + 2\pi/n$

• Harmonic flow and azimuthal anisotropy of event-by-event spectrum,

$$
\frac{dN}{d\phi_p} \sim \sum_n V_n e^{-in\phi_p} \iff V_n = v_n e^{in\Psi_n} = \langle e^{in\phi_p} \rangle \quad (complex \text{!})
$$
\nAzimuthal symmetry of V_n : $\phi_p \to \phi_p + 2\pi/n$

• Origins of azimuthal anisotropy : initial state geometry + fluctuations $(\frac{1}{\sqrt{2}})$ $\frac{\mathsf{I}}{N}$)

• Harmonic flow and azimuthal anisotropy of event-by-event spectrum,

$$
\frac{dN}{d\phi_p} \sim \sum_n V_n e^{-in\phi_p} \iff V_n = v_n e^{in\Psi_n} = \langle e^{in\phi_p} \rangle \quad (complex \!)
$$

Azimuthal symmetry of V_n : $\phi_p \to \phi_p + 2\pi/n$

• Origins of azimuthal anisotropy : initial state geometry + fluctuations $(\frac{1}{\sqrt{2}})$ $\frac{\mathsf{I}}{N}$)

(Hydro.) Flow response to initial anisotropies:

$$
V_n = V_n \left(\underbrace{\text{initial anisotropy}}_{\text{small and } \frac{2\pi}{n} \text{ symmetric}}; \eta/s, \ldots \right)
$$

• Harmonic flow and azimuthal anisotropy of event-by-event spectrum,

$$
\frac{dN}{d\phi_p} \sim \sum_n V_n e^{-in\phi_p} \iff V_n = v_n e^{in\Psi_n} = \langle e^{in\phi_p} \rangle \quad (complex \!)
$$

Azimuthal symmetry of V_n : $\phi_p \to \phi_p + 2\pi/n$

• Origins of azimuthal anisotropy : initial state geometry + fluctuations $(\frac{1}{\sqrt{2}})$ $\frac{\mathsf{I}}{N}$)

(Hydro.) Flow response to initial anisotropies:

$$
V_n = V_n \left(\underbrace{\text{initial anisotropy} : \varepsilon_n}_{\text{small and } \frac{2\pi}{n} \text{ symmetric}}; \eta/s, \ldots \right) = \underbrace{\kappa_n^L \times \varepsilon_n}_{\text{linear}}
$$

• Harmonic flow and azimuthal anisotropy of event-by-event spectrum,

$$
\frac{dN}{d\phi_p} \sim \sum_n V_n e^{-in\phi_p} \iff V_n = v_n e^{in\Psi_n} = \langle e^{in\phi_p} \rangle \quad (complex \text{ !})
$$
\nAzimuthal symmetry of V_n : $\phi_p \to \phi_p + 2\pi/n$

• Origins of azimuthal anisotropy : initial state geometry + fluctuations $(\frac{1}{\sqrt{2}})$ $\frac{\mathsf{I}}{N}$)

(Hydro.) Flow response to initial anisotropies:

$$
V_n = V_n \left(\underbrace{\text{initial anisotropy} : \varepsilon_n}_{\text{small and } \frac{2\pi}{n} \text{ symmetric}}; \eta/s, \ldots \right) = \underbrace{\kappa_n^L \times \varepsilon_n}_{\text{linear}} + \underbrace{\kappa_n^{NL} \times O(\varepsilon_n^2)}_{\text{nonlinear}}
$$

Measurements of higher order harmonic flow: V_4 , (also for V_5 , V_6 etc.)

 $V_4\{\Psi_2\}$

w.r.t. lower order harmonics

[STAR nucl-ex/0310029 / PHENIX arXiv:1003.5586]

 $V_4\{\Psi_4\}$ w.r.t. its own event plane [ALICE 1105.2865 / PHENIX 1105.3928]

Measurements of higher order harmonic flow: V_4 , (also for V_5 , V_6 etc.)

 \bullet V_4 measurements in experiment:

$$
V_4\{\Psi_2\} = \frac{\langle V_4 (V_2^*)^2 \rangle}{\langle |V_2|^4 \rangle^{1/2}}
$$

w.r.t. lower order harmonics

[STAR nucl-ex/0310029 / PHENIX arXiv:1003.5586]

 $V_4\{\Psi_4\}(\approx V_4\{2\} = \langle |V_4|^2 \rangle^{1/2})$ w.r.t. its own event plane [ALICE 1105.2865 / PHENIX 1105.3928]

Measurements of higher order harmonic flow: V_4 , (also for V_5 , V_6 etc.)

 \bullet V_4 measurements in experiment:

$$
V_4\{\Psi_2\} = \frac{\langle V_4 (V_2^*)^2 \rangle}{\langle |V_2|^4 \rangle^{1/2}}
$$

w.r.t. lower order harmonics

[STAR nucl-ex/0310029 / PHENIX arXiv:1003.5586]

 $V_4\{\Psi_4\}(\approx V_4\{2\} = \langle |V_4|^2 \rangle^{1/2})$ w.r.t. its own event plane [ALICE 1105.2865 / PHENIX 1105.3928]

Similarly, V_6 has been measured with respect to Ψ_2 and Ψ_6 .

• Event-plane correlations from ATLAS are related to these quantities :

The event-plane correlations are compatible with CMS V_4 and V_6 data.

- Similary, V_5 and V_7 could be measured w.r.t. a plane constructed with Ψ_2 and Ψ_3 (Ψ_{23}); V_6 could also be measured w.r.t. Ψ_3 . These projected measurements are smaller, but can be measured with better accuracy !
	- Better resolution in experiments for lower harmonics.

- Similary, V_5 and V_7 could be measured w.r.t. a plane constructed with Ψ_2 and Ψ_3 (Ψ_{23}); V_6 could also be measured w.r.t. Ψ_3 . These projected measurements are smaller, but can be measured with better accuracy !
	- Better resolution in experiments for lower harmonics.

- Similary, V_5 and V_7 could be measured w.r.t. a plane constructed with Ψ_2 and Ψ_3 (Ψ_{23}); V_6 could also be measured w.r.t. Ψ_3 . These projected measurements are smaller, but can be measured with better accuracy !
	- Better resolution in experiments for lower harmonics.

We still need from experiments: $V_5\{\Psi_{23}\}, V_6\{\Psi_3\}, V_7\{\Psi_{23}\}.$

• Definition of χ_4 – decomposition of V_4 in terms of V_2 :

hydro. resp. :
$$
V_4 = \kappa_4^L \varepsilon_4 + \frac{\kappa_4^{NL} \varepsilon_2^2 + \dots}{\kappa_4^{L^2}} + \dots
$$
, $V_2 = \kappa_2 \varepsilon_2$

• Definition of χ_4 – decomposition of V_4 in terms of V_2 :

hydro. resp. :
$$
V_4 = \kappa_4^L \varepsilon_4 + \kappa_4^{NL} \varepsilon_2^2 + \dots
$$
, $V_2 = \kappa_2 \varepsilon_2$
 $v_4^L \sim v_2^2$

Ratio between hydro. flow resp.: $\chi_4 = \kappa_4^{NL}$ $_{4}^{NL}/\kappa_2^2$

• Definition of χ_4 – decomposition of V_4 in terms of V_2 :

hydro. resp. :
$$
V_4 = \kappa_4^L \varepsilon_4 + \kappa_4^{NL} \varepsilon_2^2 + \dots
$$
, $V_2 = \kappa_2 \varepsilon_2$
 $v_4^L \sim v_2^2$

Ratio between hydro. flow resp.: $\chi_4 = \kappa_4^{NL}$ $_{4}^{NL}/\kappa_2^2$

Similarly, $\chi_5 = \kappa_5^{NL}$ $_5^{NL}/(\kappa_2\kappa_3),\text{ etc.}$

• Definition of χ_4 – decomposition of V_4 in terms of V_2 :

hydro. resp. :
$$
V_4 = \kappa_4^L \varepsilon_4 + \kappa_4^{NL} \varepsilon_2^2 + \dots
$$
, $V_2 = \kappa_2 \varepsilon_2$
 $v_4^L \sim v_2^2$

Ratio between hydro. flow resp.: $\chi_4 = \kappa_4^{NL}$ $_{4}^{NL}/\kappa_2^2$

Similarly, $\chi_5 = \kappa_5^{NL}$ $_5^{NL}/(\kappa_2\kappa_3),\text{ etc.}$

• Why is χ_4 interesting?

Indep. of initial state (condition) by construction ! $\text{equivalently : } \quad V_4(\varepsilon_2, \varepsilon_4, \ldots) = V_4^L(\varepsilon_4, \ldots) + \chi_4(V_2(\varepsilon_2, \ldots))^2$

• Definition of χ_4 – decomposition of V_4 in terms of V_2 :

hydro. resp. :
$$
V_4 = \kappa_4^L \varepsilon_4 + \kappa_4^{NL} \varepsilon_2^2 + \dots
$$
, $V_2 = \kappa_2 \varepsilon_2$

$$
V_4^L \sim V_2^2
$$

Ratio between hydro. flow resp.: $\chi_4 = \kappa_4^{NL}$ $_{4}^{NL}/\kappa_2^2$

Similarly, $\chi_5 = \kappa_5^{NL}$ $_5^{NL}/(\kappa_2\kappa_3),\text{ etc.}$

• Why is χ_4 interesting?

Indep. of initial state (condition) by construction ! $\text{equivalently : } \quad V_4(\varepsilon_2, \varepsilon_4, \ldots) = V_4^L(\varepsilon_4, \ldots) + \chi_4(V_2(\varepsilon_2, \ldots))^2$

- χ_4 is determined by collective properties of medium (η/s) and by freeze-out

 \Rightarrow a scaling relation from V_A^{NL} $N_L^N = \frac{1}{2} V_2^2$ $\frac{r2}{2}$.

• Definition of χ_4 – decomposition of V_4 in terms of V_2 :

hydro. resp. :
$$
V_4 = \kappa_4^L \varepsilon_4 + \kappa_4^{NL} \varepsilon_2^2 + \dots
$$
, $V_2 = \kappa_2 \varepsilon_2$
 $v_4^L \sim v_2^2$

Ratio between hydro. flow resp.: $\chi_4 = \kappa_4^{NL}$ $_{4}^{NL}/\kappa_2^2$

Similarly, $\chi_5 = \kappa_5^{NL}$ $_5^{NL}/(\kappa_2\kappa_3),\text{ etc.}$

• Why is χ_4 interesting?

Indep. of initial state (condition) by construction ! $\text{equivalently : } \quad V_4(\varepsilon_2, \varepsilon_4, \ldots) = V_4^L(\varepsilon_4, \ldots) + \chi_4(V_2(\varepsilon_2, \ldots))^2$

- χ_4 is determined by collective properties of medium (η/s) and by freeze-out

 \Rightarrow a scaling relation from V_A^{NL} $N_L^N = \frac{1}{2} V_2^2$ $\frac{r2}{2}$.

Approachable in experiments !

χ_4 can be measured experimentally

• Considering the definition of χ_4 : $V_4 = V_4^L + \chi_4(V_2)^2$

We assume that the 'linear' term V_4^L V_4^L is uncorrelated with V_2^2 $\frac{r2}{2}$.

$$
\chi_4 = \frac{\langle V_4 (V_2^*)^2 \rangle}{\langle |V_2|^4 \rangle} = \frac{V_4 \{\Psi_2\}}{\langle |V_2|^4 \rangle^{1/2}} = \frac{V_4 \text{ w.r.t. } \Psi_2}{\text{moments of } V_2}
$$

χ_4 can be measured experimentally

• Considering the definition of χ_4 : $V_4 = V_4^L + \chi_4(V_2)^2$

We assume that the 'linear' term V_4^L V_4^L is uncorrelated with V_2^2 $\frac{r2}{2}$.

$$
\chi_4 = \frac{\langle V_4 (V_2^*)^2 \rangle}{\langle |V_2|^4 \rangle} = \frac{V_4 \{\Psi_2\}}{\langle |V_2|^4 \rangle^{1/2}} = \frac{V_4 \text{ w.r.t. } \Psi_2}{\text{moments of } V_2}
$$

• Moments $\langle |V_2|^4 \rangle^{1/2}$ are extracted from CMS cumulants $v_2\{2\}$ and $v_2\{4\},$

χ_4 can be measured experimentally

• Considering the definition of χ_4 : $V_4 = V_4^L + \chi_4(V_2)^2$

We assume that the 'linear' term V_4^L V_4^L is uncorrelated with V_2^2 $\frac{r2}{2}$.

$$
\chi_4 = \frac{\langle V_4 (V_2^*)^2 \rangle}{\langle |V_2|^4 \rangle} = \frac{V_4 \{\Psi_2\}}{\langle |V_2|^4 \rangle^{1/2}} = \frac{V_4 \text{ w.r.t. } \Psi_2}{\text{moments of } V_2}
$$

• Moments $\langle |V_2|^4 \rangle^{1/2}$ are extracted from CMS cumulants $v_2\{2\}$ and $v_2\{4\},$

(See also ATLAS event-shape selection.)

χ_4 : hydro. vs. experiments

• Hydro calculation with a smooth Gaussian density profile + deformations :

 $\chi_4 =$ $\overline{v_4}$ v_2^2 2 \leftrightarrow deforming Gaussian profile by an ellipticity ε_2 .

χ_4 : hydro. vs. experiments

• Hydro calculation with a smooth Gaussian density profile + deformations :

 $\chi_4 =$ $\overline{v_4}$ v_2^2 2 \leftrightarrow deforming Gaussian profile by an ellipticity ε_2 .

 $T_{\text{fo}} = 150$ MeV, Lattice EOS, direct pions :

Hydro. captures right trend and magnitude.

χ_n of higher order harmonics: V_5 , V_6 and V_7

 $\bullet\,$ From nonlinear resp. allowed by rotational symmetry :

$$
\frac{2\pi}{5} \Rightarrow (V_5, V_2V_3) \Leftrightarrow \chi_5 = \frac{\langle V_5(V_2^*V_3^*)\rangle}{\langle |V_2|^2|V_3|^2\rangle}
$$

$$
\frac{2\pi}{6} \Rightarrow (V_6, V_2^3, V_3^2) \Leftrightarrow \chi_{62} = \frac{\langle V_6V_2^{*3}\rangle}{\langle |V_2|^6\rangle}, \chi_{63} = \frac{\langle V_6V_3^{*2}\rangle}{\langle |V_3|^4\rangle}
$$

$$
\frac{2\pi}{7} \Rightarrow (V_7, V_2^2V_3) \Leftrightarrow \chi_7 = \frac{\langle V_7(V_2^{*2}V_3^*)\rangle}{\langle |V_2|^4|V_3|^2\rangle}
$$

χ_n of higher order harmonics: V_5 , V_6 and V_7

• From nonlinear resp. allowed by rotational symmetry :

$$
\frac{2\pi}{5} \Rightarrow (V_5, V_2V_3) \Leftrightarrow \chi_5 = \frac{\langle V_5(V_2^*V_3^*)\rangle}{\langle |V_2|^2|V_3|^2\rangle}
$$

$$
\frac{2\pi}{6} \Rightarrow (V_6, V_2^3, V_3^2) \Leftrightarrow \chi_{62} = \frac{\langle V_6V_2^{*3}\rangle}{\langle |V_2|^6\rangle}, \chi_{63} = \frac{\langle V_6V_3^{*2}\rangle}{\langle |V_3|^4\rangle}
$$

$$
\frac{2\pi}{7} \Rightarrow (V_7, V_2^2V_3) \Leftrightarrow \chi_7 = \frac{\langle V_7(V_2^{*2}V_3^*)\rangle}{\langle |V_2|^4|V_3|^2\rangle}
$$

• Scaling relations from **freeze-out**: (recall $V_4^{NL} = \frac{1}{2}$ $\frac{1}{2}V_{2}^{2}$

$$
\Rightarrow V_5^{NL} = V_2 V_3, \quad V_{6|3}^{NL} = \frac{1}{2} V_3^2, \quad V_{6|2}^{NL} = \frac{1}{6} V_2^3, \quad V_7^{NL} = \frac{1}{2} V_2^2 V_3
$$

• χ_n from experiments:

V_n w.r.t. lower harmonics / moments of lower harmonics

- * Extract V_n w.r.t. lower harmonics by, e.g., ATLAS event-plane correlations.
- * Extract moments from cumulants [or Bhalerao et. al., PLB742 94-98].

• χ_n from experiments:

V_n w.r.t. lower harmonics / moments of lower harmonics

- * Extract V_n w.r.t. lower harmonics by, e.g., ATLAS event-plane correlations.
- * Extract moments from cumulants [or Bhalerao et. al., PLB742 94-98].

• Smooth hydro. vs. experiments :

- Hydro. captures right trend and magnitude.
- A simple, but non-trivial scaling relation nonlinearities from freeze-out

$$
\chi_4 \sim \chi_{63} \sim \frac{1}{2}\chi_5
$$
\n
$$
\chi_{62} \sim \frac{1}{3}\chi_7
$$
\nquadratic: $\langle p_t^2 \rangle / \langle p_t \rangle^2$ \ncubic: $\langle p_t^3 \rangle / \langle p_t \rangle^3$

• Smooth hydro. vs. experiments :

- Hydro. captures right trend and magnitude.
- A simple, but non-trivial scaling relation nonlinearities from freeze-out

$$
\chi_4 \sim \chi_{63} \sim \frac{1}{2}\chi_5
$$
 (exp. confirmed!) $\chi_{62} \sim \frac{1}{3}\chi_7$ (need χ_7 from exp.)
quadratic $\langle p_t^2 \rangle / \langle p_t \rangle^2$ cubic $\langle p_t^3 \rangle / \langle p_t \rangle^3$

• Also from event-by-event calculations – AMPT with $\sigma = 1.5$ mb:

- Good test of independency of χ_n on initial state fluctuations.
- Scaling relation also seen in AMPT results, in particular $\chi_7 = 3\chi_{62}$.

Hydro. prediction of $V_7\{\Psi_{23}\} = \chi_7 \times \sqrt{\langle |V_2|^4 |V_3|^2 \rangle}$ $\{\Psi_{23}\} = \chi_7 \times \sqrt{\langle |V_2|^4 |V_3|^2}$ $\left(\right)$

• New set of measurables for higher harmonics :

$$
\chi_n = \underbrace{\frac{\text{Nonlinear hydro. resp.}}{\text{(powers of) linear hydro. resp.}}}_{\text{theory}} = \underbrace{\frac{V_n \text{ w.r.t. lower harmonics}}{\text{(moments of) lower harmonics}}}_{\text{experiment}}
$$

- Indep. of initial state geometry and fluctuations. \Leftrightarrow Naïve hydro. and AMPT.
- Measurables directly related to medium collective properties η/s .
- Scaling relations suggest nonlinearities dominated by freeze-out.
- Event-by-event hydro. calculations.
- Direct measurements from experiments.

