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e Harmonic flow and azimuthal anisotropy of event-by-event spectrum,
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e Harmonic flow and azimuthal anisotropy of event-by-event spectrum,

Azimuthal symmetry of V,,: ¢, — ¢, + 27/n

e Origins of azimuthal anisotropy : initial state geometry + fluctuations (LN)
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Harmonic flow in heavy-ion collisions and flow response

e Harmonic flow and azimuthal anisotropy of event-by-event spectrum,

~ Y VpeT 0 =V, =0,V = (e?)  (complex!)

dgbp

Azimuthal symmetry of V,,: ¢, — ¢, + 27/n

e Origins of azimuthal anisotropy : initial state geometry + fluctuations (—=)
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(Hydro.) Flow response to initial anisotropies:

V,, = Vi ( initial anisotropy : e, ;71/s,...)

-~

small and 2% -~ symmetric

“ 1/13

2015 KOBE JAPAN




Harmonic flow in heavy-ion collisions and flow response

e Harmonic flow and azimuthal anisotropy of event-by-event spectrum,

~ Y VpeT 0 =V, =0,V = (e?)  (complex!)

dgbp

Azimuthal symmetry of V,,: ¢, — ¢, + 27/n

e Origins of azimuthal anisotropy : initial state geometry + fluctuations (—=)

N
10
5
E o
> i
5—
7‘|.“.\..“‘ ‘|
10 40 0 10
x(fm)

(Hydro.) Flow response to initial anisotropies:

V,, = V,,( initial anisotropy : €, ;n/s,...) = kn X €n
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Harmonic flow in heavy-ion collisions and flow response

e Harmonic flow and azimuthal anisotropy of event-by-event spectrum,

~ Y VpeT 0 =V, =0,V = (e?)  (complex!)

dgbp

Azimuthal symmetry of V,,: ¢, — ¢, + 27/n

e Origins of azimuthal anisotropy : initial state geometry + fluctuations (LN)
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(Hydro.) Flow response to initial anisotropies:

Vi, = V,,( initial anisotropy : €, ;7n/s,...) = ke X en + kot x O(e2)
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e V4, measurements in experiment:

Va{¥s} w.r.t. lower order harmonics

[STAR nucl-ex/0310029 / PHENIX arXiv:1003.5586]

Va{Wy4} w.r.t. its own event plane

[ALICE 1105.2865 / PHENIX 1105.3928]
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e V4, measurements in experiment:

(Va(V2)®)
([Va[*)1/2

[STAR nucl-ex/0310029 / PHENIX arXiv:1003.5586]

w.r.t. lower order harmonics

Vi{WUs} =

Va{ U (~Va{2} = ([V4]*)*?)  w.r.t. its own event plane

[ALICE 1105.2865 / PHENIX 1105.3928]
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Measurements of higher order harmonic flow: Vj, (also for V5, Vi etc.)
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e V4, measurements in experiment:

(Va(V2)®)
([Va[*)1/2

[STAR nucl-ex/0310029 / PHENIX arXiv:1003.5586]

w.r.t. lower order harmonics

Va{W,) =

Vi{ W H(=Va{2} = <|V4|2>1/2) w.r.t. its own event plane

[ALICE 1105.2865 / PHENIX 1105.3928]

‘ ‘ Similarly, Vs has been measured with respect to Wy and Ws.

2/13
2015 KOBE JAPAN



e Event-plane correlations from ATLAS are related to these quantities :

(cosd(Vy — Uy)) = Vinl} (cos6(Wg — Wy)) = Vo{a}

Vi{ Wy} Vel Vet
 ATLASP,, = ATLAS Py
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The event-plane correlations are compatible with CMS V4 and Vi data.
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e Similary, V5 and V7 could be measured w.r.t. a plane constructed with Ws
and U3 (Wa3); Vs could also be measured w.r.t. Ws. These projected
measurements are smaller, but can be measured with better accuracy !

— Better resolution in experiments for lower harmonics.
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e Similary, V5 and V7 could be measured w.r.t. a plane constructed with Ws
and U3 (Wa3); Vs could also be measured w.r.t. Ws. These projected
measurements are smaller, but can be measured with better accuracy !

— Better resolution in experiments for lower harmonics.

\112 \113 \If5 \IJG \117
Vs X v N/A | N/A
Ve | v/ | X [N/A| v/ | N/A
V7 X N/A | N/A X
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e Similary, V5 and V7 could be measured w.r.t. a plane constructed with Ws
and U3 (Wa3); Vs could also be measured w.r.t. Ws. These projected
measurements are smaller, but can be measured with better accuracy !

— Better resolution in experiments for lower harmonics.

\112 \113 \If5 \IJG \117
Vs X v N/A | N/A
Ve | v/ | X [N/A| v/ | N/A
V7 X N/A | N/A X

We still need from experiments: Vs{Was}, Vs{Ws}, V7{Was}.
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e Definition of x4 — decomposition of V4 in terms of V5 :

L NL 2
hydro. resp. : Vi=Kjea+rs e5+..., Vo= Kaoeo
v v
V4L NV22
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L NL 2
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v v
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Ratio between hydro. flow resp.: x4 = k4 ~ /K3
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e Definition of x4 — decomposition of V4 in terms of V5 :

L NL 2
hydro. resp. : Vi=Kjea+rs e5+..., Vo= Kaoeo
v v
V4L NV22

Ratio between hydro. flow resp.: x4 = k4 ~ /K3

NL/

Similarly, x5 = k5 ~ /(k2k3), etc.

e Why is y4 interesting?

equivalently :  Vi(ez,e4,...) = Vi¥(ea,...) + xa(Va(ea,...))?
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e Definition of x4 — decomposition of V4 in terms of V5 :

L NL 2
hydro. resp. : Vi=Kjea+rs e5+..., Vo= Kaoeo
v v
V4L NV22

Ratio between hydro. flow resp.: x4 = k4 ~ /K3

Similarly, x5 = &' “/(k2r3), etc.
e Why is y4 interesting?

equivalently :  Vi(e2,€4,...) = V4L(€4, )+ xa(Va(es, .. .))?

- X4 is determined by collective properties of medium (n/s) and by freeze-out

= a scaling relation from V4N L = %V22.

“ 5/13

2015 KOBE JAPAN




e Definition of x4 — decomposition of V4 in terms of V5 :

L NL 2
hydro. resp. : Vi=Kjea+rs e5+..., Vo= Kaoeo
v v
V4L NV22

Ratio between hydro. flow resp.: x4 = k4 ~ /K3

Similarly, x5 = &' “/(k2r3), etc.

e Why is y4 interesting?

equivalently :  Vi(ez,e4,...) = Vi¥(ea,...) + xa(Va(ea,...))?

- X4 is determined by collective properties of medium (n/s) and by freeze-out

= a scaling relation from V4N L = %V22.

‘“ 5/13

2015 KOBE JAPAN



e Considering the definition of x4 : Vi = Vi¥ + xa(V2)?

_ (Va(V5H)?) _ _Va{¥o} _ Vi wrt. WUy
X4 (IV2]4) (|[Va|4)1/2 moments of V5
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e Considering the definition of x4 : Vi = Vi¥ + xa(V2)?

_ (Va(V5H)?) _ _Va{¥o} _ Vi wrt. WUy
X4 ([Val]4) (|Va]4)1/2 moments of V5

e Moments (|V5|*)!/? are extracted from CMS cumulants v2{2} and vo{4},
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e Considering the definition of x4 : Vi = Vi¥ + xa(V2)?

_ (Va(V5H)?) _ _Va{¥o} _ Vi wrt. WUy
X4 (IV2]4) (|[Va|4)1/2 moments of V5

e Moments (|V5|*)!/? are extracted from CMS cumulants v2{2} and vo{4},
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‘“ (See also ATLAS event-shape selection.)
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e Hydro calculation with a smooth Gaussian density profile + deformations :

X4 = v—; <+ deforming Gaussian profile by an ellipticity e».
U
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X4 : hydro. vs. experiments

e Hydro calculation with a smooth Gaussian density profile 4 deformations :

X4 = v_; <+ deforming Gaussian profile by an ellipticity e».
U

Tt, = 150 MeV, Lattice EOS, direct pions :

14 | Exp. data e
X4 ideal hydro. —-
12 * n/s=1/4n — -

resp. ratios

0O 10 20 30 40 50 60
Centrality (%)
‘ a Hydro. captures right trend and magnitude.
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Xn of higher order harmonics: V5, Vi and V7
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Xn of higher order harmonics: V5, Vi and V7
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e From nonlinear resp. allowed by rotational symmetry :

— = (V5, V2V3)

= = (W, V5Va)

— = (V67 V237 V32)

e Scaling relations from freeze-out: (recall V' % = %VQQ)

2015 KOBE JAPAN
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® Y\, from experiments:

Vn w.r.t. lower harmonics / moments of lower harmonics

* Extract V,, w.r.t. lower harmonics by, e.g., ATLAS event-plane correlations.

* Extract moments from cumulants [or Bhalerao et. al., PLB742 94-98].
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® Y\, from experiments:

Vn w.r.t. lower harmonics / moments of lower harmonics

* Extract V,, w.r.t. lower harmonics by, e.g., ATLAS event-plane correlations.

* Extract moments from cumulants [or Bhalerao et. al., PLB742 94-98].
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e Smooth hydro. vs. experiments :

3 ‘

V4_/V22 V6/V3 V5/(V2V3) V6/V2f3
25 T T T .
2 L A4 1 u
[ ]
15 | ]
: 1 e |
'S
0.5 T T .
O | 765 | | | | | )(622\ | | | |
0 1020304050600 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Centrality (%) Centrality (%) Centrality (%) Centrality (%) Centrality (%)

e Hydro. captures right trend and magnitude.

e A simple, but non-trivial scaling relation — nonlinearities from freeze-out

1 1
3(4 ~ X63 "~ §X5J 3(62 ~ §X7J
quadratic :(p2)/(p¢)>2 cubic :(p3)/(p¢)>
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e Smooth hydro. vs. experiments :
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e Hydro. captures right trend and magnitude.

e A simple, but non-trivial scaling relation — nonlinearities from freeze-out

1 1
X4 ~ X63 ~ 5)(5 (exp. confirmed !) xg2 ~ §X7 (need x7 from exp.)
quadratic :(p2)/(ps)2 cubic ((p3)/(ps)3
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e Also from event-by-event calculations — AMPT with ¢ = 1.5 mb:
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e Good test of independency of y, on initial state fluctuations.
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e Scaling relation also seen in AMPT results, in particular x7 = 3xg2.
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Centrality (%)
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Hydro. prediction of V7{Ws3} = x7 X \/<|V2|4|V3|2>
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Summary and outlook

e New set of measurables for higher harmonics :

B Nonlinear hydro. resp. Vi, wrt. lower harmonics
Xn = (powers of) linear hydro. resp.  (moments of) lower harmonics
theory experiment

- Indep. of initial state geometry and fluctuations. < Nalve hydro. and AMPT.
- Measurables directly related to medium collective properties — 7n/s.

- Scaling relations suggest nonlinearities dominated by freeze-out.

e Event-by-event hydro. calculations.

e Direct measurements from experiments.
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