Nonlinear hydrodynamic response confronts LHC data

Li Yan

CNRS, Institut de Physique Théorique, Saclay

Sep. 28, 2015, Quark Matter 2015

with Subrata Pal and Jean-Yves Ollitrault

• PLB744 (2015) 82-87 • Work in progress
Harmonic flow in heavy-ion collisions and flow response

- Harmonic flow and azimuthal anisotropy of event-by-event spectrum,

\[\frac{dN}{d\phi_p} \sim \sum_n V_n e^{-in\phi_p} \quad \iff \quad V_n = v_n e^{in\Psi_n} = \langle e^{in\phi_p} \rangle \quad (\text{complex!}) \]
Harmonic flow in heavy-ion collisions and flow response

- Harmonic flow and azimuthal anisotropy of event-by-event spectrum,

\[
\frac{dN}{d\phi_p} \sim \sum_n V_n e^{-in\phi_p} \quad \iff \quad V_n = v_n e^{in\Psi_n} = \langle e^{in\phi_p} \rangle \quad (\text{complex!})
\]

Azimuthal symmetry of \(V_n \): \(\phi_p \to \phi_p + 2\pi/n \)
Harmonic flow in heavy-ion collisions and flow response

- Harmonic flow and azimuthal anisotropy of event-by-event spectrum,

\[\frac{dN}{d\phi_p} \sim \sum_n V_n e^{-in\phi_p} \iff V_n = v_n e^{in\Psi_n} = \langle e^{in\phi_p} \rangle \quad (\text{complex !}) \]

- Azimuthal symmetry of \(V_n \): \(\phi_p \rightarrow \phi_p + 2\pi/n \)

- Origins of azimuthal anisotropy: initial state geometry + fluctuations \((\frac{1}{\sqrt{N}}) \)
Harmonic flow in heavy-ion collisions and flow response

- Harmonic flow and azimuthal anisotropy of event-by-event spectrum,

\[
\frac{dN}{d\phi_p} \sim \sum_n V_n e^{-in\phi_p} \quad \Leftrightarrow \quad V_n = v_n e^{in\Psi_n} = \langle e^{in\phi_p} \rangle \quad (\text{complex!})
\]

Azimuthal symmetry of \(V_n \): \(\phi_p \rightarrow \phi_p + 2\pi/n \)

- Origins of azimuthal anisotropy: initial state geometry + fluctuations \((\frac{1}{\sqrt{N}}) \)

- (Hydro.) Flow response to initial anisotropies:

\[
V_n = V_n(\text{ initial anisotropy } : \varepsilon_n ; \eta/s, \ldots) \]

small and \(\frac{2\pi}{n} \) symmetric
Harmonic flow in heavy-ion collisions and flow response

- Harmonic flow and azimuthal anisotropy of event-by-event spectrum,

\[
\frac{dN}{d\phi_p} \sim \sum_n V_n e^{-in\phi_p} \iff V_n = v_n e^{in\Psi_n} = \langle e^{in\phi_p} \rangle \quad \text{(complex!)}
\]

Azimuthal symmetry of \(V_n\): \(\phi_p \to \phi_p + 2\pi/n\)

- Origins of azimuthal anisotropy: initial state geometry + fluctuations \((\frac{1}{\sqrt{N}})\)

- (Hydro.) Flow response to initial anisotropies:

\[
V_n = V_n(\underbrace{\text{initial anisotropy}: \varepsilon_n}_{\text{small and } \frac{2\pi}{n} \text{ symmetric}}; \eta/s, \ldots) = \kappa_n^L \times \varepsilon_n
\]

linear
Harmonic flow in heavy-ion collisions and flow response

- Harmonic flow and azimuthal anisotropy of event-by-event spectrum,
 \[\frac{dN}{d\phi_p} \sim \sum_n V_n e^{-in\phi_p} \iff V_n = v_n e^{in\Psi_n} = \langle e^{in\phi_p} \rangle \quad \text{(complex!)} \]

 Azimuthal symmetry of \(V_n \): \(\phi_p \to \phi_p + 2\pi/n \)

- Origins of azimuthal anisotropy: initial state geometry + fluctuations (\(\frac{1}{\sqrt{N}} \))

- (Hydro.) Flow response to initial anisotropies:
 \[V_n = V_n(\underbrace{\text{initial anisotropy} : \varepsilon_n}_{\text{small and } \frac{2\pi}{n} \text{ symmetric}} ; \eta/s, \ldots) = \kappa_n^L \times \varepsilon_n + \kappa_n^{NL} \times O(\varepsilon_n^2) \]

 \(\kappa_n^L \times \varepsilon_n \) **linear**
 \(\kappa_n^{NL} \times O(\varepsilon_n^2) \) **nonlinear**
Measurements of higher order harmonic flow: V_4, (also for V_5, V_6 etc.)

- V_4 measurements in experiment:

 $$V_4\{\Psi_2\} \quad \text{w.r.t. lower order harmonics}$$

 \[\text{[STAR nucl-ex/0310029 / PHENIX arXiv:1003.5586]}\]

 $$V_4\{\Psi_4\} \quad \text{w.r.t. its own event plane}$$

 \[\text{[ALICE 1105.2865 / PHENIX 1105.3928]}\]
Measurements of higher order harmonic flow: V_4, (also for V_5, V_6 etc.)

- V_4 measurements in experiment:

$$V_4\{\Psi_2}\approx\frac{\langle V_4 (V_2^*)^2 \rangle}{\langle |V_2|^4 \rangle^{1/2}}$$

w.r.t. lower order harmonics

[STAR nucl-ex/0310029 / PHENIX arXiv:1003.5586]

$$V_4\{\Psi_4\} (\approx V_4\{2\} = \langle |V_4|^2 \rangle^{1/2})$$

w.r.t. its own event plane

[ALICE 1105.2865 / PHENIX 1105.3928]
Measurements of higher order harmonic flow: V_4, (also for V_5, V_6 etc.)

- V_4 measurements in experiment:

\[
V_4\{\Psi_2\} = \frac{\langle V_4(V_2^*)^2 \rangle}{\langle |V_2|^4 \rangle^{1/2}} \quad \text{w.r.t. lower order harmonics}
\]

[STAR nucl-ex/0310029 / PHENIX arXiv:1003.5586]

\[
V_4\{\Psi_4\}(\approx V_4\{2\} = \langle |V_4|^2 \rangle^{1/2}) \quad \text{w.r.t. its own event plane}
\]

[ALICE 1105.2865 / PHENIX 1105.3928]

Similarly, V_6 has been measured with respect to Ψ_2 and Ψ_6.
Event-plane correlations from ATLAS are related to these quantities:

\[\langle \cos 4(\Psi_4 - \Psi_2) \rangle = \frac{V_4\{\Psi_2\}}{V_4\{\Psi_4\}} \]

\[\langle \cos 6(\Psi_6 - \Psi_2) \rangle = \frac{V_6\{\Psi_2\}}{V_6\{\Psi_6\}} \]

The event-plane correlations are compatible with CMS V_4 and V_6 data.
• Similarly, V_5 and V_7 could be measured w.r.t. a plane constructed with Ψ_2 and Ψ_3 (Ψ_{23}); V_6 could also be measured w.r.t. Ψ_3. These projected measurements are smaller, but can be measured with better accuracy!

 – Better resolution in experiments for lower harmonics.
• Similary, V_5 and V_7 could be measured w.r.t. a plane constructed with Ψ_2 and Ψ_3 (Ψ_{23}); V_6 could also be measured w.r.t. Ψ_3. These projected measurements are smaller, but can be measured with better accuracy!

– Better resolution in experiments for lower harmonics.

<table>
<thead>
<tr>
<th></th>
<th>Ψ_2</th>
<th>Ψ_3</th>
<th>Ψ_5</th>
<th>Ψ_6</th>
<th>Ψ_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_5</td>
<td>✗</td>
<td></td>
<td>✓</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>V_6</td>
<td>✓</td>
<td>✗</td>
<td></td>
<td>✓</td>
<td>N/A</td>
</tr>
<tr>
<td>V_7</td>
<td>✗</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>✗</td>
</tr>
</tbody>
</table>
Similary, V_5 and V_7 could be measured w.r.t. a plane constructed with Ψ_2 and Ψ_3 (Ψ_{23}); V_6 could also be measured w.r.t. Ψ_3. These projected measurements are smaller, but can be measured with better accuracy!

- Better resolution in experiments for lower harmonics.

<table>
<thead>
<tr>
<th></th>
<th>Ψ_2</th>
<th>Ψ_3</th>
<th>Ψ_5</th>
<th>Ψ_6</th>
<th>Ψ_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_5</td>
<td>×</td>
<td></td>
<td>√</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>V_6</td>
<td>✓</td>
<td>×</td>
<td>N/A</td>
<td>✓</td>
<td>N/A</td>
</tr>
<tr>
<td>V_7</td>
<td>×</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>✓</td>
</tr>
</tbody>
</table>

We still need from experiments: $V_5\{\Psi_{23}\}$, $V_6\{\Psi_3\}$, $V_7\{\Psi_{23}\}$.
New measurables $\chi_n \Leftrightarrow$ nonlinear hydro. resp. of higher harmonics

- Definition of χ_4 – decomposition of V_4 in terms of V_2:

 \[
 \text{hydro. resp.: } V_4 = \kappa_4^L \varepsilon_4 + \kappa_4^{NL} \varepsilon_2^2 + \ldots, \quad V_2 = \kappa_2 \varepsilon_2
 \]
New measurables $\chi_n \leftrightarrow$ nonlinear hydro. resp. of higher harmonics

- Definition of χ_4 – decomposition of V_4 in terms of V_2

 $$V_4 = \kappa_4^L \varepsilon_4 + \kappa_4^{NL} \varepsilon_2^2 + \ldots, \quad V_2 = \kappa_2 \varepsilon_2$$

 Ratio between hydro. flow resp.: $\chi_4 = \kappa_4^{NL} / \kappa_2^2$
New measurables $\chi_n \Leftrightarrow$ nonlinear hydro. resp. of higher harmonics

- Definition of χ_4 – decomposition of V_4 in terms of V_2:

 \[
 \text{hydro. resp.: } V_4 = \kappa_4^L \varepsilon_4 + \kappa_4^{NL} \varepsilon_2^2 + \ldots, \quad V_2 = \kappa_2 \varepsilon_2
 \]

 \[\sim V_2^2\]

 Ratio between hydro. flow resp.: $\chi_4 = \kappa_4^{NL} / \kappa_2^2$

Similarly, $\chi_5 = \kappa_5^{NL} / (\kappa_2 \kappa_3)$, etc.
New measurables $\chi_n \Leftrightarrow$ nonlinear hydro. resp. of higher harmonics

- Definition of χ_4 – decomposition of V_4 in terms of V_2:
 \[
 \text{hydro. resp. : } V_4 = \kappa_4^L \varepsilon_4 + \kappa_4^{NL} \varepsilon_2^2 + \ldots, \quad V_2 = \kappa_2 \varepsilon_2
 \]

 Ratio between hydro. flow resp.: $\chi_4 = \frac{\kappa_4^{NL}}{\kappa_2^2}$

 Similarly, $\chi_5 = \frac{\kappa_5^{NL}}{(\kappa_2 \kappa_3)}$, etc.

- Why is χ_4 interesting?

 \[\text{Indep. of initial state (condition) by construction}!\]

 equivalently: \[V_4(\varepsilon_2, \varepsilon_4, \ldots) = V_4^L(\varepsilon_4, \ldots) + \chi_4(V_2(\varepsilon_2, \ldots))^2\]
New measurables $\chi_n \Leftrightarrow$ nonlinear hydro. resp. of higher harmonics

- Definition of χ_4 – decomposition of V_4 in terms of V_2:

 $$V_4 = \kappa_4^L \varepsilon_4 + \kappa_4^{NL} \varepsilon_2^2 + \ldots, \quad V_2 = \kappa_2 \varepsilon_2$$

 Ratio between hydro. flow resp.: $\chi_4 = \frac{\kappa_4^{NL}}{\kappa_2^2}$

Similarly, $\chi_5 = \frac{\kappa_5^{NL}}{(\kappa_2 \kappa_3)}$, etc.

- Why is χ_4 interesting?

 Indep. of initial state (condition) by construction!

 equivalently: $V_4(\varepsilon_2, \varepsilon_4, \ldots) = V_4^L(\varepsilon_4, \ldots) + \chi_4(V_2(\varepsilon_2, \ldots))^2$

 - χ_4 is determined by collective properties of medium (η/s) and by **freeze-out**

 \Rightarrow a scaling relation from $V_4^{NL} = \frac{1}{2} V_2^2$.
New measurables $\chi_n \Leftrightarrow$ nonlinear hydro. resp. of higher harmonics

- Definition of χ_4 – decomposition of V_4 in terms of V_2:

 $V_4 = \kappa_4^L \varepsilon_4 + \kappa_4^{NL} \varepsilon_2^2 + \ldots$, $V_2 = \kappa_2 \varepsilon_2$

 Ratio between hydro. flow resp.: $\chi_4 = \frac{\kappa_4^{NL}}{\kappa_2^2}$

Similarly, $\chi_5 = \frac{\kappa_5^{NL}}{(\kappa_2 \kappa_3)}$, etc.

- Why is χ_4 interesting?

 Indep. of initial state (condition) by construction!

 equivalently: $V_4(\varepsilon_2, \varepsilon_4, \ldots) = V_4^L(\varepsilon_4, \ldots) + \chi_4(V_2(\varepsilon_2, \ldots))^2$

 - χ_4 is determined by collective properties of medium (η/s) and by freeze-out

 \Rightarrow a scaling relation from $V_4^{NL} = \frac{1}{2} V_2^2$.

 Approachable in experiments!
χ₄ can be measured experimentally

- Considering the definition of χ₄: \(V₄ = V₄^L + χ₄(V₂)^2 \)

We assume that the 'linear' term \(V₄^L \) is uncorrelated with \(V₂^2 \).

\[
χ₄ = \frac{\langle V₄(V₂^*)^2 \rangle}{\langle |V₂|^4 \rangle} = \frac{V₄\{Ψ₂\}}{\langle |V₂|^4 \rangle^{1/2}} = \frac{V₄ \text{ w.r.t. } Ψ₂}{\text{moments of } V₂}
\]
\(\chi_4 \) can be measured experimentally

- Considering the definition of \(\chi_4 \):
 \[
 V_4 = V_4^L + \chi_4 (V_2)^2
 \]

We assume that the 'linear' term \(V_4^L \) is uncorrelated with \(V_2^2 \).

\[
\chi_4 = \frac{\langle V_4 (V_2^*)^2 \rangle}{\langle |V_2|^4 \rangle} = \frac{V_4 \{ \Psi_2 \}}{\langle |V_2|^4 \rangle^{1/2}} = \frac{V_4 \text{ w.r.t. } \Psi_2}{\text{moments of } V_2}
\]

- Moments \(\langle |V_2|^4 \rangle^{1/2} \) are extracted from CMS cumulants \(v_2\{2\} \) and \(v_2\{4\} \),

(See also ATLAS event-shape selection.)
\(\chi_4 \) can be measured experimentally

- Considering the definition of \(\chi_4 : V_4 = V_4^L + \chi_4 (V_2)^2 \)

We assume that the 'linear' term \(V_4^L \) is uncorrelated with \(V_2^2 \).

\[
\chi_4 = \frac{\langle V_4 (V_2^*)^2 \rangle}{\langle |V_2|^4 \rangle} = \frac{V_4 \{ \Psi_2 \}}{\langle |V_2|^4 \rangle^{1/2}} = \frac{V_4 \text{ w.r.t. } \Psi_2}{\text{moments of } V_2}
\]

- Moments \(\langle |V_2|^4 \rangle^{1/2} \) are extracted from CMS cumulants \(v_2\{2\} \) and \(v_2\{4\} \),

(See also ATLAS event-shape selection.)
\(\chi_4 : \) hydro. vs. experiments

- Hydro calculation with a smooth Gaussian density profile + deformations:

\[
\chi_4 = \frac{v_4}{v_2^2} \iff \text{deforming Gaussian profile by an ellipticity } \varepsilon_2.
\]
\(\chi_4 : \text{hydro. vs. experiments} \)

- Hydro calculation with a smooth Gaussian density profile + deformations:
 \[
 \chi_4 = \frac{v_4}{v_2^2} \leftrightarrow \text{deforming Gaussian profile by an ellipticity } \varepsilon_2.
 \]

\(T_{f_0} = 150 \text{ MeV}, \text{Lattice EOS, direct pions:} \)

![Graph showing \(\chi_4 \) vs. Centrality (%)](image)

Hydro. captures right trend and magnitude.
χ_n of higher order harmonics: V_5, V_6 and V_7

- From nonlinear resp. allowed by rotational symmetry:

\[
\frac{2\pi}{5} \Rightarrow (V_5, V_2V_3) \quad \Leftrightarrow \quad \chi_5 = \frac{\langle V_5(V_2^*V_3^*) \rangle}{\langle |V_2|^2|V_3|^2 \rangle}
\]

\[
\frac{2\pi}{6} \Rightarrow (V_6, V_2^3, V_3^2) \quad \Leftrightarrow \quad \chi_{62} = \frac{\langle V_6V_2^3 \rangle}{\langle |V_2|^6 \rangle}, \quad \chi_{63} = \frac{\langle V_6V_3^2 \rangle}{\langle |V_3|^4 \rangle}
\]

\[
\frac{2\pi}{7} \Rightarrow (V_7, V_2^2V_3) \quad \Leftrightarrow \quad \chi_7 = \frac{\langle V_7(V_2^2V_3^*) \rangle}{\langle |V_2|^4|V_3|^2 \rangle}
\]
\[\chi_n \] of higher order harmonics: \(V_5, V_6 \) and \(V_7 \)

- From nonlinear resp. allowed by rotational symmetry:

 \[
 \frac{2\pi}{5} \Rightarrow (V_5, V_2 V_3) \iff \chi_5 = \frac{\langle V_5 (V_2^* V_3^*) \rangle}{\langle |V_2|^2 |V_3|^2 \rangle}
 \]

 \[
 \frac{2\pi}{6} \Rightarrow (V_6, V_2^3, V_3^2) \iff \chi_{62} = \frac{\langle V_6 V_2^* V_3^* \rangle}{\langle |V_2|^6 \rangle}, \quad \chi_{63} = \frac{\langle V_6 V_3^* \rangle}{\langle |V_3|^4 \rangle}
 \]

 \[
 \frac{2\pi}{7} \Rightarrow (V_7, V_2^2 V_3) \iff \chi_7 = \frac{\langle V_7 (V_2^* V_3^*) \rangle}{\langle |V_2|^4 |V_3|^2 \rangle}
 \]

- Scaling relations from freeze-out: (recall \(V_4^{NL} = \frac{1}{2} V_2^2 \))

 \[
 \Rightarrow V_5^{NL} = V_2 V_3, \quad V_6^{NL} = \frac{1}{2} V_3^2, \quad V_6^{NL} = \frac{1}{6} V_2^3, \quad V_7^{NL} = \frac{1}{2} V_2^2 V_3
 \]
• χ_n from experiments:

V_n w.r.t. lower harmonics / moments of lower harmonics

* Extract V_n w.r.t. lower harmonics by, e.g., ATLAS event-plane correlations.
* Extract moments from cumulants [or Bhalerao et. al., PLB742 94-98].
• χ_n from experiments:

V_n w.r.t. lower harmonics / moments of lower harmonics

* Extract V_n w.r.t. lower harmonics by, e.g., ATLAS event-plane correlations.

* Extract moments from cumulants [or Bhalerao et. al., PLB742 94-98].
- Smooth hydro. vs. experiments:

- Hydro. captures right trend and magnitude.

- A simple, but non-trivial scaling relation – nonlinearities from freeze-out

\[\chi_4 \sim \chi_{63} \sim \frac{1}{2} \chi_5 \]

quadratic: \(\langle p_t^2 \rangle / \langle p_t \rangle^2 \)

\[\chi_{62} \sim \frac{1}{3} \chi_7 \]

cubic: \(\langle p_t^3 \rangle / \langle p_t \rangle^3 \)
Smooth hydro. vs. experiments:

- Hydro. captures right trend and magnitude.

- A simple, but non-trivial scaling relation – nonlinearities from freeze-out

\[\chi_4 \sim \chi_{63} \sim \frac{1}{2} \chi_5 \] (exp. confirmed !)

\[\chi_{62} \sim \frac{1}{3} \chi_7 \] (need \(\chi_7 \) from exp.)

- Quadratic: \(\frac{\langle p_t^2 \rangle}{\langle p_t \rangle^2} \)

- Cubic: \(\frac{\langle p_t^3 \rangle}{\langle p_t \rangle^3} \)
Also from event-by-event calculations – AMPT with $\sigma = 1.5$ mb:

- Good test of independency of χ_n on initial state fluctuations.
- Scaling relation also seen in AMPT results, in particular $\chi_7 = 3\chi_{62}$.
Hydro. prediction of $V_7\{\Psi_{23}\} = \chi_7 \times \sqrt{\langle |V_2|^4 |V_3|^2 \rangle}$
Summary and outlook

- New set of measurables for higher harmonics:

\[\chi_n = \frac{\text{Nonlinear hydro. resp.}}{(\text{powers of}) \, \text{linear hydro. resp.}} \text{theory} = \frac{V_n \text{ w.r.t. lower harmonics}}{(\text{moments of}) \, \text{lower harmonics}} \text{experiment} \]

- Indep. of initial state geometry and fluctuations. \(\Leftrightarrow \) Naïve hydro. and AMPT.
- Measurables directly related to medium collective properties – \(\eta/s \).
- Scaling relations suggest nonlinearities dominated by freeze-out.

- Event-by-event hydro. calculations.
- Direct measurements from experiments.