Non-prompt J/ψ measurement with the PHENIX VTX detector at RHIC

Takashi HACHIYA for the PHENIX collaboration
RIKEN NISHINA Center contact : hachiya@rcf.rhic.bnl.gov

Introduction

Heavy quark (bottom and charm) is a clean probe to study the property of QGP.
- Bottom and charm separation is imperative to understand heavy quark suppression in QGP.
 - New result of separated bottom and charm yield
 - D. McGlinchey (talk 9/28 space 2B, poster)
 - H. Asano (poster)

Non-prompt J/ψ as a probe
- $B \rightarrow J/\psi + X \rightarrow e^+ + e^-$
- This is a direct measurement of B production.
 - Bottom & charm separation is not necessary, which introduces additional systematic uncertainty.
 - It is challenging to extract the signal
 - Branching ratio ($B \rightarrow J/\psi$) is small (~1%)
 - Main background is prompt J/ψ that comes from the collision vertex

Silicon Vertex Tracker (VTX)

- Structure : 4 Si layers (2 pixel & 2 stripixel)
- Wide acceptance: $|\phi| \sim 2\pi, |y|<1.2$
- Capabilities:
 - Precise tracking around collision vertex
 - Collision vertex determination
 - DCA resolution is ~60 μm (pT>4GeV/c) for electron measurement

Data analysis

Analysis method
1. $J/\psi \rightarrow e^+e^-$
 - e^+e^- pairs are measured by the central arm + VTX
2. 2nd vertex reconstruction
 - The position of closest approach for e^+e^- pairs in 2D plane (X-Y).

Improve the J/ψ signals
- Conversion veto cut
 - remove electrons from Dalitz decays & conversions for reduction of the combinatorial BG.
- Z-Distance of e^+e^- at 2nd vertex position
 - Z-distance should be zero for true pairs but non-zero for fake pairs

Summary & Outlook

- Non-prompt J/ψ extraction is feasible based on simulation
- Data analysis is in progress for both p+p and Au+Au 200GeV
 - VTX improves the J/ψ measurement and reduces combinatorial BG.
 - Single electron DCA can enrich the non-prompt J/ψ signal
 - Large amount of p+p and Au+Au data was recorded in run2014 & 2015
- Statistics is 10 times larger than run11 Au+Au
 - 10 B min. bias Au+Au collisions
 - VTX performance was improved

Non-prompt J/ψ extraction

Pseudo proper time (x) of B using the J/ψ

$$x = \frac{Lxy \cdot M_{J/\psi}}{p_T(J/\psi)} - c t(B)$$

Secondary $J/\psi \rightarrow e^+e^-$

Collision Vertex

Secondary Vertex

Pseudo proper time distribution in simulation (PYTHIA + GEANT)

Non-prompt $J/\psi \rightarrow e^+e^-$

Prompt $J/\psi \rightarrow e^+e^-$

Non-prompt J/ψ can be extracted using shape difference of pseudo proper time

Single electron DCA can improve non-prompt J/ψ

Expected yield of non-prompt J/ψ

- Number of J/ψ is 10000 @ 10 B minimum bias data in Au+Au 200GeV
- J/ψ yield in p+p 200GeV
 - Non-prompt J/ψ: $\sigma_{B\rightarrow J/\psi}e^+e^- = 1.2 nb$ (PRL.103.082002 PHENIX)
 - Prompt J/ψ: $\sigma_{J/\psi}e^+e^- = 45 nb$ (PRL. 98, 232002 PHENIX)
- Production ratio: 2.6% in p+p, 5.2% in Au+Au
- 50% of suppression factor is used for Prompt J/ψ yield in Au+Au
- The expected non-prompt J/ψ is 100~200 in Au+Au 200GeV