Collective
To Be or Not to Be Collective

Jamie Nagle, Darren McGlinchey, Javier Orjuela Koop
University of Colorado
Exploiting Intrinsic Triangular Geometry in Relativistic 3He + Au Collisions to Disentangle Medium Properties

1University of Colorado at Boulder, Boulder, Colorado 80309, USA
2Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
(Received 20 December 2013; revised manuscript received 27 June 2014; published 12 September 2014)

Parton Cascade (AMPT) in Small Systems

Azimuthal Anisotropy Relative to the Participant Plane from AMPT in Central $p+Au, d+Au$, and ^3He+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV

J.D. Orjuela Koop, A. Adare, D. McGlinchey, J.L. Nagle

1University of Colorado, Boulder
(Dated: July 30, 2015)

http://arxiv.org/abs/1501.06880

Useful inputs from Zi-Wei Lin and Denes Molnar
AMPT motivation, He et al. (arXiv:1502.05572v3)
Initial Momentum or Geometry Correlations

Initial State QCD Physics

Non-Geometry correlations directly in momentum space

![Image](image1.png)

Correlation $\sim \frac{1}{N_c Q_s^2 S_\perp}$

Important in small systems!

Not published...

$v_2(pAu) > v_2(d, ^3HeAu)$

Hydrodynamics is one model for final-state interactions

Published predictions

$v_2(^3HeAu) \sim v_2(dAu) > v_2(pAu)$
Glauber + Hydrodynamics + Cascade Predictions

Romatschke, Nagle et al., http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.112301
No Simple Eccentricity Scaling

V_2/ξ_2

$p+Au$ 200GeV 0-5%
$d+Au$ 200GeV 0-5%, PRL. 114, 192301
^3He+Au 200GeV 0-5%, arXiv:1507.06273
SONIC $p+Au$
SONIC $d+Au$
SONIC ^3He+Au
arXiv:1502.04745

\bullet p+Au 200GeV 0-5%
\diamond d+Au 200GeV 0-5%, PRL. 114, 192301
\blacklozenge 3He+Au 200GeV 0-5%, arXiv:1507.06273
\text{SONIC $p+Au$}
\text{SONIC $d+Au$}
\text{SONIC ^3He+Au}
arXiv:1502.04745

PHOENIX
preliminary

V_2/ξ_2

p_T [GeV/c]
No Simple Eccentricity Scaling

$^3\text{He}/d+\text{Au}$ – some events hot spots never connect and so $\varepsilon_2 \rightarrow v_2$ translation incomplete
With larger η/s, one can match $^3\text{He}/d+\text{Au}$.

$p+A$ is because initial ε_2 is very small.
Possible solution is giving proton more substructure.
AMPT Predictions

Modified Initial Glauber including 3He wavefunction (same I.C. as SONIC)

String melting

Lots of partons

$\sigma = 1.5$ mb

Hadron Cascade

AMPT (same code) Cu+Au @ 200 GeV

PHENIX arXiv:1509.07784
AMPT Details

Central p+Au
55% of partons have zero scatters
Central p+Au @ 200 GeV

~ 200 partons
AMPT has all (anti)quarks
m < 30 MeV/c²
and zero gluons!

Scatters = 0
Scatters = 1
Scaters >=2

~ 45 parton-parton scatterings
AMPT – Just the Partons (ZPC)

AMPT p+Au at $\sqrt{s} = 200$ GeV
$0 < b [\text{fm}] < 2$

- $N_{\text{scatt}} = 0$
- $N_{\text{scatt}} = 1$
- $N_{\text{scatt}} \geq 2$

Prob. to Not Scatter (ϕ)

Why isn’t this flat with p_T since $\sigma = 1.5$ mb is momentum independent?
Low p_T partons do not interact for > 1 fm/c

$v_2(p_T)$ depends on formation time

Not yet clear why $<N_{\text{scatt}}>$ drops for high p_T partons
Hadronization in AMPT

200 quarks/antiquarks \rightarrow ~ 100 mesons

AMPT $p+Au$

$0 < b \ [fm] < 2$

$\sqrt{s} = 200 \ \text{GeV}$

Just from parton cascade

Just after hadronization

Coalescence just by closest spatial partner (no momentum space)

How to assign a theory uncertainty?
Contributions for Each Stage

No Parton or Hadron Cascade

Hadron Cascade Only

Parton Cascade \rightarrow Hadrons

Also Hadron Cascade
Different Picture in 3He+Au
Further Discriminating (?) Tests

Species dependence signature of velocity field, though coalescence can mimic some features (all?)

superSONIC predictions

AMPT p+Au
Definitive evidence for geometry, not initial momentum correlations

However, competing final state explanations need work to discriminate.
Geometry Rules – but what final-state mechanism

Viscous Hydrodynamics, time = 1.000

d+Au Central Initial Condition
AMPT $p+Au$ at $\sqrt{s} = 200$ GeV
$0 < b [\text{fm}] < 2$
AMPT p+Au
$0 < b \text{ [fm]} < 2$
$\sqrt{s} = 200 \text{ GeV}$

Graph showing v_n vs. p_T [GeV/c] for different values of b. The graph includes several curves, each representing a different b value, with the colors indicating different ranges.