Measurements of D_S^{\pm} - meson production in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV in STAR

Md. Nasim University of California, Los Angeles (*for the STAR Collaboration*)

Outline

- Motivation
- STAR detector and analysis details
- p_T spectra, particle ratio and R_{AA}
- Elliptic flow (v₂) of D_S
- Summary

Why Study D_s^{\pm} ?

- \circ D_S meson : one charm and one strange quark
- Strangeness enhancement due to QGP is expected to affect the yield of D_S

Why Study D_s^{\pm} ?

- \circ D_{S} meson : one charm and one strange quark
- Strangeness enhancement due to QGP is expected to affect the yield of D_S
- \circ R_{CP} or R_{AA} of D_S > D⁰ predicted

Why Study D_s^{\pm} ?

- \circ D_{S} meson : one charm and one strange quark
- Strangeness enhancement due to QGP is expected to affect the yield of D_S
- \circ R_{CP} or R_{AA} of D_S > D⁰ predicted
- \circ Elliptic flow of $D_S \leq D^0$ is expected due to earlier freeze out of D_S

Good Probe to study the hadronization and strangeness enhancement

STAR Detector in Year 2014

 \circ Full 2π coverage

 \circ Pseudorapidity coverage ~ ±1 unit

STAR Detector in Year 2014

For Details about HFT : See talk by G. Contin (Tuesday, 3.00 PM, Futute Exp. Fac. Upgr.

Analysis Details

- Au+Au at $\sqrt{s_{NN}} = 200$ GeV in 2014
- 750 M minimum bias events analyzed (70% of collected data)
- $|V_Z| \leq 6 \text{ cm}$
- Centrality using raw charged particle measured in TPC and Glauber Model
- Decay Channel : $D_S^{\pm} \longrightarrow \phi (\longrightarrow K^+ + K^-) + \pi^{\pm}$
- Branching Ratio: 2.32 ± 0.14 %
- Decay Length : $150 \pm 2 \,\mu m$
- Mass : $1968.47 \pm 0.33 \text{ MeV/c}^2$

Secondary Vertex : Using HFT

 $D_s \longrightarrow K^* + K$ decay channel : See Poster by L. Zhou (ID :336)

Particle Identification

TPC

TPC PID: Using dE/dx

TOF PID: Using Time of Flight (β)*

*TOF PID has been applied only when β information is available.

Particle Identification

TPC PID: Using dE/dx

TOF PID: Using Time of Flight (β)*

*TOF PID has been applied only when β information is available.

p_T integrated D_S^{\pm} Signal

- First measurement of D_S meson at RHIC.
- We will present D_8 spectra for 10-40% centrality and for 2.5 <p_T<5.0 GeV/c.
- \bullet Lower \mathbf{p}_{T} and more peripheral collisions studies are underway.

Mass and width

Mass is consistent with PDG value

Width is consistent with the results from detector simulations.

$R_{AA}\, of\, D_S$

STAR charm cross-section: Phys. Rev. D 86 (2012) 72013

 D_s spectra for p+p collision has been calculated from measured charm cross-section in STAR. Fragmentation factor from charm to D_s is 0.09±0.01 *

The R_{AA} of D_S is higher than unity but statistically not significant.

STAR D⁰ R_{AA}: Phys. Rev. Lett. 113 (2014) 142301

*Ref: H1 Collaboration, Eur.Phys.J.C38(2005)447 and ZEUS Collaboration, Eur.Phys.J.C44(2005)351

The ratio D_S/D⁰ is less than unity and seems to be higher than prediction for p+p collision from PYTHIA

S I / A 🛛 🗧

Invariant Yield and D_S/D⁰

C T/A 🕄 🚬

STAR and ALICE data are consistent with large uncertainties

1 15

Elliptic Flow Analysis

Elliptic Flow of D_S

For D⁰ v₂ : See talk by M. Lomnitz (Tuesday, 9 AM, Collective Dynamics)

φ-meson v₂
e-Print :1507.05247

First measurement of $D_S v_2$ in heavy-ion experiment. Need more statistics.

Summary

- We have observed a clear signal of \mathbf{D}_{S} at RHIC for the first time
- D_S in Au+Au 200 GeV for 10-40% central collisions:
 - D_8/D^0 seems to be higher than p+p prediction (from PYTHIA 6.4) at $p_T = 2.8$ and 3.9 GeV/c
 - $R_{AA} = 2.1 \pm 0.5 \pm_{0.7}^{0.7}$ and $1.7 \pm 0.4 \pm_{0.7}^{0.5}$ at $p_T = 2.8$ and 3.9 GeV/c, respectively
- First measurement of elliptic flow of D_S is presented
- Stay tuned for Run 16 Data with increased statistics and improved detector performance

Back-up

D_s Pb+Pb (ALICE: arXiv:1509.07287) D^oAu+Au (STAR: PRL 113 (2014) 142301)

φ-meson signal

