Initial state azimuthal anisotropies in small collision systems

T. Lappi

University of Jyväskylä, Finland

QM 2015, Kobe
Outline

This talk:

▶ Dilute probe scattering off CGC field:
 particle production and correlations
▶ Azimuthal correlations v_n from MV/JIMWLK target
▶ Relating different approximations for the dipole-dipole correlator

Based on:

▶ T. L., “Azimuthal harmonics of color fields in a high energy nucleus,”
▶ T. L., B. Schenke, S. Schlichting and R. Venugopalan,
 “Tracing the origin of azimuthal gluon correlations in the color glass condensate,”
Long range in rapidity: early time

- Long range rapidity correlations: early time
 - Analogous to CMB
- $v_n =$ multiparticle correlation
 (usually long range in rapidity)
- Geometry is the ultimate infinite-range correlation
 - All rapidities sensitive to \perp geometry
 - Hydro translates x-space correlations into p-space

Initial state QCD long range effects:
non-geometry correlations directly in momentum space

Seen as yield/trigger or as v_n:
[arXiv:1409.1792 [hep-ex]].
Domains in the target color field

Initial state CGC correlations: dilute-dense limit

Particle production

- \sim collinear high-x q/g
- p_T transfer from target E-field

Correlations:

- Domains of size $\sim 1/Q_s$
- Several particles, same domain \implies azimuthal correlations.

- $\sim Q_s^2 S_\perp$ domains ($S_\perp =$ size of interaction area, πR_A^2, πR_B^2)
- $\sim N_c^2$ colors

Correlation $\frac{1}{N_c^2 Q_s^2 S_\perp} \implies$ relatively stronger in small systems

Dense-dense: domain structure same (details more complicated)
Explicit setup for dilute-dense

- Passage of probe particle through target: eikonal Wilson line in color field

\[V(x_T) = P \exp \left\{ ig \int dx^- A^+_{\text{cov}}(x_T, x^-) \right\} \]

- Localize quarks in Gaussian wave packet in probe:

\[\frac{dN}{d^2p_T} \propto \int_{x_T, y_T} e^{-i p_T \cdot (x_T - y_T)} e^{-\frac{(x_T - b_T)^2}{2B}} e^{-\frac{(y_T - b_T)^2}{2B}} \frac{1}{N_c} \text{Tr} V_{x_T}^\dagger V_{y_T} \cdot \]

- Two particle correlation

\[\frac{dN}{d^2p_T d^2q_T} = \int \cdots \left\langle \frac{1}{N_c} \text{Tr} V_{x_T}^\dagger V_{y_T} \frac{1}{N_c} \text{Tr} V_{u_T}^\dagger V_{v_T} \right\rangle \quad \Rightarrow \quad \nu_n \{2\} \]

- Need distribution of Wilson lines \(V \) for \(\langle \rangle \):

MV or JIMWLK (in Langevin method)
Anisotropy coefficients from JIMWLK and MV

- p_T-structure like data, but peak at lower p_T
- Depends on probe size B
- Stronger for larger x (MV)

- Thick line: reference is all p_T's
- Thin line: reference is same p_T bin

Target homogenous & isotropic

$\Rightarrow v_n$ from fluctuations, not geometry
Anisotropy coefficients from JIMWLK and MV

▶ p_T-structure like data, but peak at lower p_T
▶ Depends on probe size B
▶ Stronger for larger x (MV)
▶ v_4 at higher p_T

- Thick line: reference is all p_T’s
- Thin line: reference is same p_T bin

Target homogenous & isotropic
⇒ v_n from fluctuations, not geometry
Anisotropy coefficients from JIMWLK and MV

- p_T-structure like data, but peak at lower p_T
- Depends on probe size B
- Stronger for larger x (MV)
- v_4 at higher p_T
- Also odd v_n (only for quark probe)

Target homogenous & isotropic

$\Rightarrow v_n$ from fluctuations, not geometry
Azimuthal correlations analyzed in terms of the

- “Glasma graph” ridge correlation

Dusling, Venugopalan, Phys. Rev. D 87 (2013) 9, 094034
[arXiv:1302.7018 [hep-ph]].
Calculations in the literature

Azimuthal correlations analyzed in terms of the
- “Glasma graph” ridge correlation
- E-field domain model

[arXiv:1406.5781 [hep-ph]].
Calculations in the literature

Azimuthal correlations analyzed in terms of the

- “Glasma graph” ridge correlation
- E-field domain model
- Dilute dense with full nonlinear JIMWLK

Azimuthal correlations analyzed in terms of the

- “Glasma graph” ridge correlation
- E-field domain model
- Dilute dense with full nonlinear JIMWLK
- Dense-dense with Classical Yang-Mills

Calculations in the literature

Azimuthal correlations analyzed in terms of the
- “Glasma graph” ridge correlation
- E-field domain model
- Dilute dense with full nonlinear JIMWLK
- Dense-dense with Classical Yang-Mills

Physics of color field domains same; approximations different
Difference between approximations

Need \(\langle \text{Tr } V(x_T) V(y_T) \text{Tr } V(u_T) V(v_T) \rangle \)

Often parametrized as \(V(x_T) = P \exp \left\{ ig \int dx^- \rho(x_T, x^-) \nabla_T^2 \right\} \),

Approximations in dilute-dense

- JIMWLK: Langevin equation for \(V(x_T) \).
 Close to Gaussian in \(\rho \), but nonlinear ("nonlinear Gaussian")
- "Glasma graph": linearize in \(\rho \), Gaussian \(\rho \)
- "E-field domain model", small dipole limit

\[
\frac{1}{N_c} V^\dagger(b_T + r_T/2) V(b_T - r_T/2) \approx 1 - \frac{r_i r_j}{4N_c} E_i^a(b_T) E_j^a(b_T)
\]

+ non-Gaussian 4-point correlation with extra parameter \(\Lambda \)

CYM: nonlinear with Gaussian \(\rho \) for both nuclei

+ final state evolution
Numerical comparison of approximations

Compare full MV or JIMWLK $v_n \{2\}$ to

- Nonlinear Gaussian (Gaussian ρ, do not linearize):
 accurate within 10%

- "Glasma graph" (Gaussian + linearized)
 differs by factor 2 at most

Remarkable consistency between approximations
Effect of reference p_T

- Correlation more localized in p_T than experimental data
 (Hadronization will change this, but how much?)
- MV
 - GG decorrelates particularly fast
- JIMWLK:
 - Little difference between approximations
\[\langle E^i E^j \rangle \sim \left[\delta^{ij} (1 - A) + 2 A \hat{a}^i \hat{a}^j \right] \]

Then average over color field direction \(\hat{a} \).
Result: non-Gaussianity with unknown parameter \(A \):

\[\langle E E E E \rangle = \left(3 \text{ Gaussian} + \hat{a}^2 \text{ from } \hat{a} \right) \langle E E \rangle \langle E E \rangle \]

What does \(A \) represent?

1. Effect of nonlinearities? (Gaussian \(\rho \), but nongaussian \(V \))
 “Glasma graph” linearization is factor \(\sim 2 \) effect.

2. Nongaussianities from JIMWLK?
 \(\sim 10\% \) effect, but interesting for theorist.

3. New structure beyond conventional CGC (MV+JIMWLK)?
 Origin? Timescales? \(N_c \)-counting?
Conclusions

Initial gluon field contribution to v_n's

- Can be significant contribution to observed flow signal, especially for small systems
- Hadronization, p_T-dependence?
- Calculated in different approximations of CGC
 Differences in terminology, but same physical picture

For the future: rapidity structure

- All of these neglect decorrelation in rapidity due to gluon emissions, parametrically important for $\Delta y \gtrsim 1/\alpha_s$
- Rapidity decorrelation formulated
 but not implemented
MV/JIMWLK: correlation is N_c-suppressed

\[\sqrt{N_c^2 - 1} v_n \text{ independent of } N_c \implies v_n \sim 1/N_c \]