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SYNOPSIS

The QCD chiral phase transition is known to be second-order for the case of massless light quarks, ml = 0. The
introduction of non-zero quark chemical potentials µ̂ = (µl/T, µs/T ) does not change the order; however the
transition temperature Tc(µ̂) decreases as the potentials are increased. In this work, we shall calculate this rate of
decrease to lowest order in µ̂ at µl = µs = 0. This rate is determined by the 2× 2 curvature matrix, given by

Tc(µ̂) = Tc(0)− µ̂TKµ̂+O
((
µ̂T µ̂

)2)
, K =

(
κll κls
κls κss

)
.

The light quark curvature has been calculated for physical quark masses by locating the peak of the chiral suscep-
tibility as a function of imaginary µl. Note however that forml > 0, the transition is not a genuine phase transition
but simply a crossover. Therefore, here we will take an alternative approach and calculate K in the chiral limit
from universality arguments.
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The QCD chiral phase transition belongs to the univer-
sality class of the 3d-O(4) model. On the lattice, this is
broken toO(2) when one uses staggered fermions. The
analog of the magnetizationM is the chiral condensate,
while the ratio of quark massesml/ms plays the role of
the symmetry-breaking field h/h0. The chemical po-
tentials do not break chiral symmetry; therefore they
enter via the reduced temperature t0t = (T −Tc)/Tc+
µ̂TKµ̂. For a suitable combination of these variables,
the chiral condensate for different condensates should

fall on a universal curve [1]. We use this fact to deter-
mine the normalization constants t0, h0 and Tc. Once
these are known, the curvature is determined from a cal-
culation of the mixed susceptibilities whose definition
and scaling function are shown below viz.
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To measure these µ̂-derivatives, we generated around
1,000 gauge configurations each for quark masses
ml = ms/27, ms/60 and ms/80. The smallest of
these corresponded to a pion mass of around 80 MeV.
The strange quark mass was fixed to its physical value.
On each configuration, we calculated these derivatives
stochastically, using around 500-1000 random vectors
per configuration. While the curvatures κij will be
eventually determined from a one-parameter (κij) fit
to the rescaled mixed susceptibilities, here we merely
obtain bounds by varying κij by hand.
The light quark curvature κll has been determined by

other groups too. While the work of Kaczmarek et
al. [2] is our previous result, obtained by the same
method but on a coarser lattice and with a different ac-
tion, the rest [3, 4, 5] were all obtained by the method
of analytic continuation at physical quark masses.
The other two coefficients are shown below. We see
that κss is an order of magnitude smaller than κll. This
tells us that the curvature along the baryochemical di-
rection µ̂B equals κll/9 to a very good approximation;
thus, κB2 ≈ 0.0067(33). Lastly, the off-diagonal coeffi-
cient κls is zero within errors, and in any case not much
larger than κss.

LINES OF CONSTANT PHYSICS

Our value for κB2 may be compared to the curvature
of the experimental freeze-out curve. Currently, there
exist both phenomenological parametrizations of the
curve (J. Cleymans et al., PRC 73, 034905 (2006)) as
well as ab initio determinations of the curvature via lat-
tice QCD (A. Bazavov et al., arXiv:1509.05786 [hep-
lat]). Empirically, it is found that the pressure p and
energy density ε stay approximately constant along this
curve. We made use of this fact by calculating con-
tours of constant p and ε to fourth-order from a Tay-
lor series expansion in µ̂. Our second-order results are
shown below. While our fourth-order results were zero
within the errors, the errors themselves served as a sort
of upper bound on the magnitude of κf4 . We state our
numbers below.

κf2 = 0.0073(12) (pressure), |κf4 | ≤ 0.004 (pressure),
= 0.0105(14) (energy). ≤ 0.006 (energy).

Thus, the second-order curvatures are comparable to
κB2 , while the fourth-order curvatures are probably not
more than ∼ 60% of the second-order ones, and possi-
bly much smaller.

REFERENCES
[1] H.-T. Ding, A. Bazavov, F. Karsch, Y. Maezawa, S. Mukherjee and P. Petreczky, PoS LATTICE 2013, 157 (2014)

[arXiv:1312.0119 [hep-lat]]; S. Ejiri et al., Phys. Rev. D 80, 094505 (2009) [arXiv:0909.5122 [hep-lat]] and references
therein.

[2] O. Kaczmarek et al., Phys. Rev. D 83, 014504 (2011) [arXiv:1011.3130 [hep-lat]].

[3] R. Bellwied, S. Borsanyi, Z. Fodor, J. Günther, S. D. Katz, C. Ratti and K. K. Szabo, arXiv:1507.07510 [hep-lat].
[4]

[4] M. Mesiti, C. Bonati, M. D’elia, M. Mariti, F. Negro and F. Sanfilippo, PoS LATTICE 2014, 174 (2015).

[5] P. Cea, L. Cosmai and A. Papa, arXiv:1508.07599 [hep-lat].

ACKNOWLEDGEMENTS
The numerical calculations described here have been performed at Jefferson Laboratory in the United States and
on the Tianhe-I and Tianhe-II supercomputers in China. This author is supported by the Research Fellowship for
International Young Scientists by the National Natural Science Foundation of China.


