Nuclear collisions at the Future Circular Collider

Néstor Armesto
Departamento de Física de Partículas and IGFAE
Universidade de Santiago de Compostela
nestor.armesto@usc.es

with Andrea Dainese (Padova), David d’Enterria (CERN), Marco van Leeuwen (NIKHEF), Silvia Masciocchi (GSI), Christof Roland (MIT), Carlos Salgado (USC) and Urs Wiedemann (CERN)
Contents:

1. The FCC(-AA):
 - Motivation.
 - Site.
 - Parameters.
 - Detector.

2. Physics case:
 - Global observables.
 - Hard probes.
 - Small x.

3. Summary and outlook.

N. Armesto, 29.09.2015 - Nuclear collisions at the FCC.

- 4 HI dedicated workshops, last one at CERN 09.14: https://indico.cern.ch/event/331669/;
- Workshop, ECT* 03.15: https://indico.cern.ch/event/382529/;
- FCC Week 2015, Washington DC, Mar. 2015: http://indico.cern.ch/event/340703/timetable/#all.detailed;
Motivation:

- Big machines take long time to come from first idea to reality e.g. >20 years for the LHC, so it is time to start thinking of another high-energy machine after the LHC.
Motivation:

LHC roadmap: according to MTP 2016-2020 V1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LS 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run 2</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
</tr>
<tr>
<td>LS 2</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
</tr>
<tr>
<td>PHASE 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
<th>2027</th>
<th>2028</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Run 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run 3</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
</tr>
<tr>
<td>LS 3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
</tr>
<tr>
<td>PHASE 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2029</th>
<th>2030</th>
<th>2031</th>
<th>2032</th>
<th>2033</th>
<th>2034</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHC</td>
<td>LS 4</td>
<td>Run 5</td>
<td>LS 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS 4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
</tr>
<tr>
<td>Run 5</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
</tr>
<tr>
<td>LS 5</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
</tr>
</tbody>
</table>
Big machines take long time to come from first idea to reality e.g. >20 years for the LHC, so it is time to start thinking of another high-energy machine after the LHC.

Motivation:

N. Armesto, 29.09.2015 - Nuclear collisions at the FCC.
Motivation:

LHC roadmap: according to MTP 2016-2020 V2

<table>
<thead>
<tr>
<th>Year</th>
<th>LS2 starting in 2019</th>
<th>=> 24 months + 3 months BC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>LS3 LHC: starting in 2024</td>
<td>=> 30 months + 3 months BC</td>
</tr>
<tr>
<td></td>
<td>Injectors: in 2025</td>
<td>=> 13 months + 3 months BC</td>
</tr>
</tbody>
</table>

Goal of HI program: 10-15 nb⁻¹ in Run3+4.

Frederick Bordry to the SPC and FC, June 2015

N. Armesto, 29.09.2015 - Nuclear collisions at the FCC.
Future Circular Collider Study - SCOPE CDR and cost review for the next ESU (2018)

Forming an international collaboration to study:

- **pp-collider (**FCC-hh**) → defining infrastructure requirements
 - ~ 16 T \Rightarrow 100 TeV pp in 100 km
 - ~ 20 T \Rightarrow 100 TeV pp in 80 km

- **e^+e^- collider (**FCC-ee**) as potential intermediate step
 - 120-350 GeV
- **p-e (**FCC-he**) option
- **80-100 km infrastructure in Geneva area**
Future Circular Collider Study - SCOPE CDR and cost review for the next ESU (2018)

Forming an international collaboration to study:

- **pp-collider (FCC-hh)**
 - defining infrastructure requirements
 - \(\sim 16 \text{ T} \Rightarrow 100 \text{ TeV} \text{ pp in } 100 \text{ km} \)
 - \(\sim 20 \text{ T} \Rightarrow 100 \text{ TeV} \text{ pp in } 80 \text{ km} \)

- **e^+e^- collider (FCC-ee)** as potential intermediate step
 - 120-350 GeV
- **p-e (FCC-he)** option
- **80-100 km infrastructure in Geneva area**

\[pp: \sqrt{s}=100 \text{ TeV} \]
\[\text{PbPb}: \sqrt{s}=39.4 \text{ TeV/nucleon} \]
\[\text{pPb}: \sqrt{s}=62.8 \text{ TeV/nucleon} \]
Site: 93 km option (Lebrun in Washington DC)

- **pp**: $\sqrt{s} = 100$ TeV
- **PbPb**: $\sqrt{s} = 39.4$ TeV/nucleon
- **pPb**: $\sqrt{s} = 62.8$ TeV/nucleon

Alignment Profile:
- Surface
- Lake
- Molasse
- Calcaire
- Alignment
- Shaft

N. Armesto, 29.09.2015 - Nuclear collisions at the FCC
Site:

100 km option (Lebrun in Washington DC)
Accelerator parameters:

Heavy Ion Pre-Accelerator Chain

The requirements and performance of the pre-accelerator chain for FCC are under studied.

Straw-man assumption to estimate (conservative) beam parameters and luminosity: LHC, as it is today, but cycling to 3.3 Z TeV, is assumed to be the injector for FCC-hh.

Baseline: Inject one LHC beam into 1/4 FCC, no waiting.

Present heavy-ion pre-injectors:

- HI source
- LINAC 3
- LEIR

2014/09/22

M. Schaumann, Workshop on Ions at the FCC, CERN
Accelerator parameters:

Conservative filling scheme!!!

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>LHC Design</th>
<th>FCC Collision</th>
<th>FCC Collision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminosity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation mode</td>
<td>-</td>
<td>Pb-Pb</td>
<td>Pb-Pb</td>
<td>p-Pb</td>
</tr>
<tr>
<td>β-function at the IP</td>
<td>[m]</td>
<td>0.5</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Initial RMS beam size at IP</td>
<td>[\mu m]</td>
<td>15.9</td>
<td>8.8</td>
<td></td>
</tr>
<tr>
<td>Initial luminosity</td>
<td>[Hz/mb]</td>
<td>1</td>
<td>2.6</td>
<td>213</td>
</tr>
<tr>
<td>Peak luminosity</td>
<td>[Hz/mb]</td>
<td>1</td>
<td>7.3</td>
<td>1192</td>
</tr>
<tr>
<td>Integrated luminosity per fill</td>
<td>[\mu b^{-1}]</td>
<td><15</td>
<td>57.8</td>
<td>21068</td>
</tr>
<tr>
<td>Integrated luminosity per run</td>
<td>[nb^{-1}]</td>
<td>-</td>
<td>8.3</td>
<td>1784</td>
</tr>
<tr>
<td>Initial bb tune shift per IP</td>
<td>[10^{-4}]</td>
<td>1.8</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>Total cross-section</td>
<td>[b]</td>
<td>515</td>
<td>597</td>
<td>2</td>
</tr>
<tr>
<td>Peak BFPP beam power</td>
<td>[W]</td>
<td>26</td>
<td>1705</td>
<td>0</td>
</tr>
<tr>
<td>Initial beam current lifetime</td>
<td>[h]</td>
<td><11.2 (2 exp.)</td>
<td>10.9</td>
<td>39.3</td>
</tr>
<tr>
<td>Luminosity lifetime (L_0/c)</td>
<td>[h]</td>
<td><5.6 (2 exp.)</td>
<td>6.2</td>
<td>14.0</td>
</tr>
</tbody>
</table>

Schaumann, 1503.09107

Note: the ALICE goal for Run 3+4 is 10-15 nb^{-1} in PbPb; in the 2013 pPb run got ~30 nb^{-1}.
Accelerator parameters:

First (conservative) estimates of luminosity (in comparison with LHC): >8 larger L_{int} per month of running

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb–Pb peak \mathcal{L} (cm$^{-2}$s$^{-1}$)</td>
<td>$(2-3\times)10^{27}$</td>
<td>5×10^{27}</td>
<td>13×10^{27}</td>
</tr>
<tr>
<td>Pb–Pb L_{int} / month (nb$^{-1}$)</td>
<td>0.8(1)</td>
<td>1(1.5)</td>
<td>>8</td>
</tr>
<tr>
<td>p–Pb peak \mathcal{L} (cm$^{-2}$s$^{-1}$)</td>
<td>$(2-3\times)10^{29}$</td>
<td>t.b.d.</td>
<td>3.5×10^{30}</td>
</tr>
<tr>
<td>p–Pb L_{int} (nb$^{-1}$)</td>
<td>80</td>
<td>t.b.d.</td>
<td>>1800</td>
</tr>
</tbody>
</table>

A. Dainese at ECT*

Could aim for programme of 100/nb (LHC x10)
Detector (pp/pA/AA):

Option 1: Solenoid-Yoke + Dipoles (CMS inspired)

Solenoid: 5-6 m diameter, 5-6 T, 23 m long
+ massive Iron yoke for flux return (shielding) and muon tagging.

Dipoles: 10 Tm with return yoke placed at 18 m.
Practically no coupling between dipoles and solenoid.
They can be designed independently at first.

H. Ten Kate

N. Armesto, 29.09.2015 - Nuclear collisions at the FCC
Detector (pp/pA/AA):

Option 2: Twin Solenoid + Dipoles

Twin Solenoid: the original 6 T, 12 m \times 23 m solenoid + now with a shielding coil
{concept proposed for the 4th detector @ILC, also an option for the LHeC in the case of large solenoid; and this technique is in all modern MRI magnets!}.

Gain?

+ **Muon tracking space:** nice new space with 3 T for muon tracking in 4 layers.
+ **Very light:** 2 coils + structures, \(\approx 5\) kt, only \(\approx 4\%) of the option with iron yoke!
+ **Smaller:** outer diameter is less than with iron.

H. Ten Kate
Detector (pp/pA/AA):

Option 3: Toroids + Solenoid + Dipoles (ATLAS +)

- Air core Barrel Toroid with 7 x muon bending power $B L^2$.
- 2 End Cap Toroids to cover medium angle forward direction.
- 2 Dipoles to cover low-angle forward direction.
- Overall dimensions: 30 m diameter x 51 m length (36,000 m3).
1. The FCC(-AA):
 • Motivation.
 • Site.
 • Parameters.
 • Detector.

2. Physics case:
 • Global observables.
 • Hard probes.
 • Small x.

3. Summary and outlook.

Contents:

- 4 HI dedicated workshops, last one at CERN 09.14: https://indico.cern.ch/event/331669/;
- Workshop, ECT* 03.15: https://indico.cern.ch/event/382529/;
- FCC Week 2015, Washington DC, Mar. 2015: http://indico.cern.ch/event/340703/timetable/#all.detailed;
Global properties:

- Using data-driven extrapolations from lower energies to the LHC:

\[\frac{dN_{\text{ch}}}{d\eta} \times 1.8 \]

\[\text{Volume} \times 1.8 \]

\[\frac{dE_T}{d\eta} \times 2.2 \]

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Pb–Pb 2.76 TeV</th>
<th>Pb–Pb 5.5 TeV</th>
<th>Pb–Pb 39 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>dN_{ch}/d\eta at \eta = 0</td>
<td>1600</td>
<td>2000</td>
<td>3600</td>
</tr>
<tr>
<td>Total N_{ch}</td>
<td>17000</td>
<td>23000</td>
<td>50000</td>
</tr>
<tr>
<td>dE_T/d\eta at \eta = 0</td>
<td>2 TeV</td>
<td>2.6 TeV</td>
<td>5.8 TeV</td>
</tr>
<tr>
<td>BE homogeneity volume</td>
<td>5000 fm³</td>
<td>6200 fm³</td>
<td>11000 fm³</td>
</tr>
<tr>
<td>BE decoupling time</td>
<td>10 fm/c</td>
<td>11 fm/c</td>
<td>13 fm/c</td>
</tr>
</tbody>
</table>

A. Dainese at QM2014

N. Armesto, 29.09.2015 - Nuclear collisions at the FCC
Using data-driven extrapolations from lower energies to the LHC:

A. Dainese at QM2014

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Pb–Pb 2.76 TeV</th>
<th>Pb–Pb 5.5 TeV</th>
<th>Pb–Pb 39 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$dN_{ch}/d\eta$ at $\eta = 0$</td>
<td>1600</td>
<td>2000</td>
<td>3600</td>
</tr>
<tr>
<td>Total N_{ch}</td>
<td>17000</td>
<td>23000</td>
<td>50000</td>
</tr>
<tr>
<td>$dE_T/d\eta$ at $\eta = 0$</td>
<td>2 TeV</td>
<td>2.6 TeV</td>
<td>5.8 TeV</td>
</tr>
<tr>
<td>BE homogeneity volume</td>
<td>5000 fm3</td>
<td>6200 fm3</td>
<td>11000 fm3</td>
</tr>
<tr>
<td>BE decoupling time</td>
<td>10 fm/c</td>
<td>11 fm/c</td>
<td>13 fm/c</td>
</tr>
</tbody>
</table>

N. Armesto, 29.09.2015 - Nuclear collisions at the FCC
Global properties:

- Using data-driven extrapolations from lower energies to the LHC:

 - The medium:
 - Is larger;
 - Lives longer;
 - Reaches higher T’s;
 - Equilibrates faster.

 ⇒ larger opportunities to see collective effects.

A. Dainese at QM2014
Charm:

- Charm becomes an active flavour.
- It can be abundantly produced secondary interactions.

Ko, NLO

Uphoff at ECT*, LO

- Large increase: thermal production may overcome shadowing.

Zhou at ECT*, NLO

N. Armesto, 29.09.2015 - Nuclear collisions at the FCC
Correlations:

- Higher multiplicity may profit collective flow studies e.g. T dependence of η/s.
- Much larger multiplicity in pp would help to understand the eventual onset of collectivity in pp and pA: flow-like features, ridge, $<p_T>$,...
Hard probes: yields

- Hard probes are much abundantly produced.

- This could make possible the use of top, abundant EWB+jet events,…

- New temperature and density range may affect hard probes: Υ melting, bbar regeneration,…

N. Armesto, 29.09.2015 - Nuclear collisions at the FCC
Hard probes: nPDFs

- Top could be used to constrain the nuclear glue as done now in pp collisions at the LHC. d'Enterria, Krajczac, Paukkunen, 1501.05879, Hessian reweighting

\[\int \mathcal{L} = 10 \text{ nb}^{-1} (1 \text{ pb}^{-1}) \text{ in PbPb (pPb)} \]

<table>
<thead>
<tr>
<th>System</th>
<th>\sqrt{s} (TeV)</th>
<th>\mathcal{L}_{int} (nb$^{-1}$)</th>
<th>Number of top+antitop quarks $t\bar{t} \rightarrow b \bar{b} l\ell\nu\nu$</th>
<th>Number of top+antitop quarks $tW \rightarrow b \ell\ell\nu\nu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb-Pb</td>
<td>5.5</td>
<td>1</td>
<td>90</td>
<td>3</td>
</tr>
<tr>
<td>p-Pb</td>
<td>8.8</td>
<td>0.2</td>
<td>300</td>
<td>10</td>
</tr>
<tr>
<td>Pb-Pb</td>
<td>39.0</td>
<td>5</td>
<td>47000</td>
<td>1300</td>
</tr>
<tr>
<td>p-Pb</td>
<td>63.0</td>
<td>1</td>
<td>100000</td>
<td>2600</td>
</tr>
</tbody>
</table>

N. Armesto, 29.09.2015 - Nuclear collisions at the FCC
Hard probes: nPDFs

- Top could be used to constrain the nuclear glue as done now in pp collisions at the LHC.

N. Armesto, 29.09.2015 - Nuclear collisions at the FCC

d'Enterria, Krajczac, Paukkunen, 1501.05879, Hessian reweighting
Hard probes: nPDFs

- Top could be used to constrain the nuclear glue as done now in pp collisions at the LHC. d'Enterria, Krajczac, Paukkunen, 1501.05879, Hessian reweighting
Top could be used to constrain the nuclear glue as done now in pp collisions at the LHC. d'Enterria, Krajczac, Paukkunen, 1501.05879, Hessian reweighting.
Hard probes: nPDFs

- Top could be used to constrain the nuclear glue as done now in pp collisions at the LHC. d’Enterria, Krajczac, Paukkunen, 1501.05879, Hessian reweighting

![Graph showing the range for Z/W⁺ at the LHC and the FCC](image)
Hard probes: boosted tops

- Use boosted tops to probe the time scales in the medium and the energy loss mechanism.

\[b\bar{b} + \ell + 2 \text{ jets} + E_T \]

yields 5 times those of the previous channel

Apolinario at ECT*,
\[t_{coh} \sim 1 \quad \text{fm/c for} \]
\[P_{T_{top}} \sim 800 \quad \text{GeV}. \]
Hard probes: boosted tops

- Use boosted tops to probe the time scales in the medium and the energy loss mechanism.

Apolinario at ECT*, $t_{coh} \sim 1$ fm/c for $P_{T_{top}} \sim 800$ GeV.
Small x (I):

- Test whether (perturbative) saturation lies in the accessible kinematic region, and understand how it works.
Small x (I):

- Test whether (perturbative) saturation lies in the accessible kinematic region, and understand how it works.
Small x (l):

- Test whether (perturbative) saturation lies in the accessible kinematic region, and understand how it works.
Small x (I):

- Test whether (perturbative) saturation lies in the accessible kinematic region, and understand how it works.
Small x (II):

- Correlations (among hadrons, jets and γ's) become available at sizeable transverse momenta.

- Exclusive VM production in UPCs will explore new regions of the kinematic plane.

N. Armesto, 29.09.2015 - Nuclear collisions at the FCC
Small x (II):

- Correlations (among hadrons, jets and γ's) become available at sizeable transverse momenta.

- Exclusive VM production in UPCs will explore new regions of the kinematic plane.
Summary and outlook:

● **Summary:** FCC-AA provides an extension of the pA/AA program to higher energies leading to
 - Hotter, longer-lived medium with larger opportunities to observe collectivity from small to large systems.
 - New degrees of freedom may become active.
 - Access to a large perturbative domain at small x: saturation.
 - Larger rates of harder probes, with new possibilities.
 - Tests of interaction models of wider interest (e.g. for UHE cosmic rays).

● **Outlook:**
 - Organisation: collaboration established, with FCC-hh, FCC-ee and FCC-he groups.
 - Initial physics document to be produced for next spring.
 - Synergy with the parallel Chinese effort highly desirable.

Visit the web pages: everybody is more than welcome to join!!!

N. Armesto, 29.09.2015 - Nuclear collisions at the FCC
Summary and outlook:

- **Summary:**
 - FCC-AA provides an extension of the pA/AA program to higher energies leading to:
 - Hotter, longer-lived medium with larger opportunities to observe collectivity from small to large systems.
 - New degrees of freedom may become active.
 - Access to a large perturbative domain at small x: saturation.
 - Larger rates of harder probes, with new possibilities.
 - Tests of interaction models of wider interest (e.g. for UHE cosmic rays).

- **Outlook:**
 - Organisation: collaboration established, with FCC-hh, FCC-ee and FCC-he groups.
 - Initial physics document to be produced for next spring.
 - Synergy with the parallel Chinese effort highly desirable.

Visit the web pages: everybody is more than welcome to join!!
Summary and outlook:

Summary: FCC-AA provides an extension of the pA/AA program to higher energies leading to
- Hotter, longer-lived medium with larger opportunities to observe collectivity from small to large systems.
- New degrees of freedom may become active.
- Access to a large perturbative domain at small x: saturation.
- Larger rates of harder probes, with new possibilities.
- Tests of interaction models of wider interest (e.g. for UHE cosmic rays).

Outlook:
- Organisation: collaboration established, with FCC-hh, FCC-ee and FCC-he groups.
- Initial physics document to be produced for next spring.
- Synergy with the parallel Chinese effort highly desirable.

Visit the web pages: everybody is more than welcome to join!!!

N. Armesto, 29.09.2015 - Nuclear collisions at the FCC
Summary and outlook:

- **Summary:** FCC-AA provides an extension of the pA/AA program to higher energies leading to
 - Hotter, longer-lived medium with larger opportunities to observe collectivity from small to large systems.
 - New degrees of freedom may become active.
 - Access to a large perturbative domain at small x.
 - Larger rates of harder probes, with new possibilities.
 - Tests of interaction models of wider interest (e.g. for UHE cosmic rays).

- **Outlook:**
 - Organisation: collaboration established, with FCC-hh, FCC-ee and FCC-he groups.
 - Initial physics document to be produced for next spring.
 - Synergy with the parallel Chinese effort highly desirable.

Visit the web pages: everybody is more than welcome to join!!!

N. Armesto, 29.09.2015 - Nuclear collisions at the FCC

Thanks a lot for your attention!!!
Backup:
Hard probes: quarkonium

- Υ may melt at the FCC: pushing the thermometer to higher values.

- Recombination, enhanced by thermal charm production, will play a dominant role for ccbar states: R_{AA}, v_2, D/π, bbbar states?

N. Armesto, 29.09.2015 - Nuclear collisions at the FCC