[Motivation](#page-1-0) [Pre-flow & Landau matching](#page-4-0) [Hydrodynamic evolution](#page-13-0) [Constraining](#page-21-0) τ_s [Parameter optimization](#page-26-0) [Conclusions](#page-33-0)
 $\frac{\partial \rho}{\partial \theta}$

Pre-equilibrium evolution effects on heavy-ion collision observables

Ulrich Heinz

In collaboration with Jia Liu and Chun Shen

Reference: J. Liu, C. Shen and U. Heinz, PRC 91 (2015) 064906

Quark Matter 2015, 9/28/15

Ulrich Heinz (Ohio State) **[Pre-equilibrium dynamics](#page-34-0)** Quark Matter 2015, 9/28/15 1 / 30

 QQ

÷

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Overview

1 [Motivation](#page-1-0)

[Free-streaming and Landau matching](#page-4-0)

- [Free-streaming](#page-5-0)
- **[Landau matching](#page-10-0)**
- **3** [Hydrodynamic evolution](#page-13-0)
	- **[Hydrodynamic initial conditions after free-streaming](#page-14-0)**
	- **[Effects of free-streaming on hydro evolution](#page-19-0)**
- **4 [Constraining](#page-21-0)** τ_s **from data**
	- [A technical issue: how to treat the non-thermalized halo](#page-22-0)
	- **[Constraining](#page-24-0)** τ_s
- [Parameter optimization](#page-26-0)
- **[Conclusions](#page-33-0)**

- 3

 QQ

 $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$

Motivation

- Relativistic viscous hydrodynamics has become the workhorse of dynamical modeling of ultra-relativistic heavy-ion collisions
- **Hydrodynamics does not become valid until the medium has reached** a certain degree of local momentum isotropization
- \blacksquare In an inhomogeneous system, collective flow (i.e. space-momentum correlations) begin, however, to develop already before hydrodynamics becomes valid.
- \blacksquare The hydrodynamic stage thus starts with a non-vanishing pre-equilibrium flow.
- Goal: To perform a systematic study of pre-equilibrium flow effects on heavy-ion collision observables.

KOD KARD KED KED B YOUR

- Here: model pre-equilibrium stage by kinetic theory (no mean fields, no plasma instabilities)
- **Neak coupling:** very few collisions, long thermalization time: $\tau_{\rm s} \gg \tau_0$

Strong coupling: frequent collisions, very rapid thermalization:

- $τ_{s} \approx τ_{0}$
- $\blacksquare \Longrightarrow$ Use τ_s to parametrize the rate of approach to hydrodynamic behavior;

model the period $\tau_0 < \tau < \tau_s$ by free-streaming massless degrees of freedom (extreme weak-coupling limit) $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ QQ

Ulrich Heinz (Ohio State) **[Pre-equilibrium dynamics](#page-0-0)** Quark Matter 2015, 9/28/15 4 / 30

Overview

[Motivation](#page-1-0)

2 [Free-streaming and Landau matching](#page-4-0)

- **[Free-streaming](#page-5-0)**
- **[Landau matching](#page-10-0)**

[Hydrodynamic evolution](#page-13-0)

- **[Hydrodynamic initial conditions after free-streaming](#page-14-0)**
- **[Effects of free-streaming on hydro evolution](#page-19-0)**

4 [Constraining](#page-21-0) τ_s **from data**

- [A technical issue: how to treat the non-thermalized halo](#page-22-0)
- **[Constraining](#page-24-0)** τ_s
- [Parameter optimization](#page-26-0)
- **[Conclusions](#page-33-0)**

D.

 QQ

 $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$

Collisionless BE: $p^{\mu} \partial_{\mu} f(x, p) = 0.$

Collisionless BE: $p^{\mu} \partial_{\mu} f(x, p) = 0.$

To match to $VISH2+1$, impose longitudinal boost invariance:

 $f(x_{\perp}, \eta_s, \tau; \, \boldsymbol{p}_{\perp}, y) = \frac{\delta(y - \eta_s)}{\tau m_{\perp} \cosh(y - \eta_s)} \tilde{f}(x_{\perp}, \tau; \, \boldsymbol{p}_{\perp}, y).$

Collisionless BE: $p^{\mu} \partial_{\mu} f(x, p) = 0.$

To match to $VISH2+1$, impose longitudinal boost invariance:

 $f(x_{\perp}, \eta_s, \tau; \, \boldsymbol{p}_{\perp}, y) = \frac{\delta(y - \eta_s)}{\tau m_{\perp} \cosh(y - \eta_s)} \tilde{f}(x_{\perp}, \tau; \, \boldsymbol{p}_{\perp}, y).$

Assume massless degrees of freedom. Analytic soln. of collisionless BE:

 $f(\mathbf{x}_{\perp}, \eta_s, \tau_s; \mathbf{p}_{\perp}, \mathbf{y}) = f(\mathbf{x}_{\perp} - (\tau_s - \tau_0)\hat{\mathbf{p}}_{\perp}, \eta_s, \tau_0; \mathbf{p}_{\perp}, \mathbf{y}).$

Collisionless BE: $p^{\mu} \partial_{\mu} f(x, p) = 0.$

To match to $VISH2+1$, impose longitudinal boost invariance:

 $f(x_{\perp}, \eta_s, \tau; \, \boldsymbol{p}_{\perp}, y) = \frac{\delta(y - \eta_s)}{\tau m_{\perp} \cosh(y - \eta_s)} \tilde{f}(x_{\perp}, \tau; \, \boldsymbol{p}_{\perp}, y).$

Assume massless degrees of freedom. Analytic soln. of collisionless BE:

 $f(\mathbf{x}_{\perp}, \eta_s, \tau_s; \mathbf{p}_{\perp}, \mathbf{y}) = f(\mathbf{x}_{\perp} - (\tau_s - \tau_0)\hat{\mathbf{p}}_{\perp}, \eta_s, \tau_0; \mathbf{p}_{\perp}, \mathbf{y}).$

Energy-momentum tensor $T^{\mu\nu}(x) = \frac{g}{(2\pi)^3} \int \frac{d^3 p}{E} \rho^{\mu} \rho^{\nu} f(x, p)$

Collisionless BE: $p^{\mu} \partial_{\mu} f(x, p) = 0.$

To match to $VISH2+1$, impose longitudinal boost invariance:

 $f(x_{\perp}, \eta_s, \tau; \, \boldsymbol{p}_{\perp}, y) = \frac{\delta(y - \eta_s)}{\tau m_{\perp} \cosh(y - \eta_s)} \tilde{f}(x_{\perp}, \tau; \, \boldsymbol{p}_{\perp}, y).$

Assume massless degrees of freedom. Analytic soln. of collisionless BE:

$$
f(\mathbf{x}_{\perp},\eta_s,\tau_s;\boldsymbol{p}_{\perp},y)=f(\mathbf{x}_{\perp}-(\tau_s-\tau_0)\hat{\boldsymbol{p}}_{\perp},\eta_s,\tau_0;\boldsymbol{p}_{\perp},y).
$$

Energy-momentum tensor $T^{\mu\nu}(x) = \frac{g}{(2\pi)^3} \int \frac{d^3 p}{E} \rho^{\mu} \rho^{\nu} f(x, p)$

Need it only at midrapidity $\eta_s = 0$ (boost invariance):

$$
T^{\mu\nu}(\mathbf{x}_{\perp},\eta_s=0,\tau)=\frac{1}{\tau}\int_{-\pi}^{\pi}d\phi_p\;\hat{p}^{\mu}\hat{p}^{\nu}F(\mathbf{x}_{\perp},\tau;\phi_p),
$$

where

$$
F(\mathbf{x}_{\perp},\tau;\phi_{p})=F_{0}(\mathbf{x}_{\perp}-(\tau-\tau_{0})\hat{\boldsymbol{\rho}}_{\perp})=\frac{g}{(2\pi)^{3}}\int_{0}^{\infty}\rho_{\perp}^{2}d\rho_{\perp}\tilde{f}(\mathbf{x}_{\perp}-(\tau-\tau_{0})\hat{\boldsymbol{\rho}}_{\perp},\tau_{0};\rho_{\perp},0)
$$

is independent of how \tilde{f} depends on the magnitude of p_{\perp} , and $F_0(x_{\perp})$ is the spatial distribution function at $\tau = \tau_0$. $\mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B}$

 OQ

Landau matching I:

Hydrodynamic form of energy-momentum tensor:

$$
T^{\mu\nu}_{\rm hyd} = \mathsf{e} \mathsf{u}^\mu \mathsf{u}^\nu - (\mathcal{P} + \Pi) \Delta^{\mu\nu} + \pi^{\mu\nu}
$$

Flow vector = timelike eigenvector of $T^{\mu\nu}$: $T^{\mu\nu}u_{\nu} = e u^{\mu}$

LRF energy density e is the associated eigenvalue; pressure $P = P(e)$ from EOS.

Project with LRF spatial projector $\Delta_{\mu\nu} = g_{\mu\nu} - u_{\mu}u_{\nu}$ to get bulk viscous pressure Π :

$$
\Pi = -\frac{1}{3} \text{Tr}(\Delta_{\mu\nu} T^{\mu\nu}) - \mathcal{P}
$$

Use double projector $\Delta^{\mu\nu}_{\alpha\beta}\equiv \frac{1}{2}\left(\Delta^\mu_\alpha\Delta^\nu_\beta{+}\Delta^\mu_\beta\Delta^\nu_\alpha\right)-\frac{1}{3}\Delta^{\mu\nu}\Delta_{\alpha\beta}$ to get $\pi^{\mu\nu}$:

$$
\pi^{\mu\nu} = \Delta^{\mu\nu}_{\alpha\beta} \, T^{\alpha\beta}
$$

Alternatively $\pi^{\mu\nu} = T^{\mu\nu} - e u^{\mu} u^{\nu} + (P + \Pi) \Delta^{\mu\nu}$.

KOD KARD KED KED B YOUR

[Motivation](#page-1-0) **[Pre-flow & Landau matching](#page-4-0)** [Hydrodynamic evolution](#page-13-0) [Constraining](#page-21-0) τ_s [Parameter optimization](#page-26-0) [Conclusions](#page-33-0)
 $\begin{array}{ccc}\n\text{0.00}\n\text{0.00}\n\end{array}$ [Landau matching](#page-11-0)

Landau matching II: Entropy generation and bulk pressure

Free-streaming preserves entropy (collisionless!)

After matching to hydro, entropy density is given by EOS from $s = \partial P/\partial T$

 \Rightarrow s jumps (increases) after Landau matching.

For successful phenomenology, normalize entropy density profile after Landau matching such that, upon completion of the dynamical evolution, it correctly reproduces the observed final multiplicity dN_{ch}/dy .

In spite of the entropy jump at τ_s , the normalization of the entropy density profile after Landau matching has a one-to-one relation with the normalization of the initial distribution function. Since the entropy jump depends on τ_s , so does the initial normalization. As τ_s is varied, the normalization is adjusted to preserve dN_{ch}/dy .

KOD KARD KED KED B YOUR

[Motivation](#page-1-0) **[Pre-flow & Landau matching](#page-4-0)** [Hydrodynamic evolution](#page-13-0) [Constraining](#page-21-0) τ_s [Parameter optimization](#page-26-0) [Conclusions](#page-33-0)
 $\begin{array}{ccc}\n\text{0.00}\n\text{0.00}\n\end{array}$ [Landau matching](#page-12-0)

Landau matching II: Entropy generation and bulk pressure

Free-streaming preserves entropy (collisionless!)

After matching to hydro, entropy density is given by EOS from $s = \partial P/\partial T$

- \Rightarrow s jumps (increases) after Landau matching.
- For successful phenomenology, normalize entropy density profile after Landau matching such that, upon completion of the dynamical evolution, it correctly reproduces the observed final multiplicity dN_{ch}/dy .
- In spite of the entropy jump at τ_s , the normalization of the entropy density profile after Landau matching has a one-to-one relation with the normalization of the initial distribution function. Since the entropy jump depends on τ_s , so does the initial normalization. As τ_s is varied, the normalization is adjusted to preserve dN_{ch}/dy .
- Since $m = 0$, $\Box = 0$ in the free-streaming stage. Since EOS from latttice QCD breaks conformal symmetry, $\Pi \neq 0$ after Landau matching. We here set $\zeta = 0$ and let Π evolve back to zero with IS EOM over a short relaxation time τ_{Π}

 QQ

Overview

[Motivation](#page-1-0)

[Free-streaming and Landau matching](#page-4-0)

- [Free-streaming](#page-5-0)
- **[Landau matching](#page-10-0)**

3 [Hydrodynamic evolution](#page-13-0)

- [Hydrodynamic initial conditions after free-streaming](#page-14-0)
- **[Effects of free-streaming on hydro evolution](#page-19-0)**

4 [Constraining](#page-21-0) τ_s **from data**

- [A technical issue: how to treat the non-thermalized halo](#page-22-0)
- **[Constraining](#page-24-0)** τ_s
- [Parameter optimization](#page-26-0)
- **[Conclusions](#page-33-0)**

 QQ

÷

Initial LRF energy density profile after free-streaming:

[Motivation](#page-1-0) [Pre-flow & Landau matching](#page-4-0) [Hydrodynamic evolution](#page-13-0) [Constraining](#page-21-0) τ_s [Parameter optimization](#page-26-0) [Conclusions](#page-33-0)
0000 00000 [Hydrodynamic ICs](#page-15-0)

Initial radial flow after free-streaming:

$$
\{v_{\perp}\} = \frac{\int d^2 r_{\perp} \gamma(\mathbf{r}_{\perp}) v_{\perp}(\mathbf{r}_{\perp}) e(\mathbf{r})_{\perp}}{\int d^2 r_{\perp} \gamma(\mathbf{r}_{\perp}) e(\mathbf{r}_{\perp})},
$$

$$
\langle v_{\perp} \rangle = \frac{1}{N_{events}} \sum_{i=1}^{N_{events}} \{v_{\perp}\}^{(i)}.
$$

Rises initially very quickly, reaching 25% of speed of light after 1 fm/c

 $i=1$

Continues to grow over the next $5 \text{ fm}/c$ at an approximate rate $\langle a_\perp \rangle \approx \frac{d \langle v_\perp \rangle}{d \tau_s} = 0.13 \, c^2 / fm.$

Free-streaming should yield an upper limit

 Ω

Initial eccentricities after free-streaming:

Eccentricities drive anisotropic flow:

$$
\mathcal{E}_n(\tau_s) = \epsilon_n(\tau_s) e^{in\Phi_n(\tau_s)}
$$
\n
$$
= -\frac{\int_{\tau_s} d^3 \sigma_\mu(x) T^{\mu\nu}_{\text{hyd}}(x) u_\nu(x) r^n_{\perp} e^{in\phi}}{\int_{\tau_s} d^3 \sigma_\mu(x) T^{\mu\nu}_{\text{hyd}}(x) u_\nu(x) r^n_{\perp}}
$$
\n
$$
= -\frac{\int d^2 r_{\perp} \gamma(r_{\perp}) e(r_{\perp}) r^n_{\perp} e^{in\phi}}{\int d^2 r_{\perp} \gamma(r_{\perp}) e(r_{\perp}) r^n_{\perp}},
$$

 $(n > 1)$

Note, this counts only contributions from fluid elements, not from cells that are already frozen out after Landau matching!

 QQ

Initial shear stress I:

Inverse Reynold number measures importance of first-order viscous stress relative to ideal hydro pressure: √ √

$$
R^{-1} = \frac{\sqrt{\pi^{\mu\nu}\pi_{\mu\nu}}}{-\Delta^{\mu\nu}T_{\mu\nu}/3} = \frac{\sqrt{\pi^{\mu\nu}\pi_{\mu\nu}}}{\mathcal{P} + \Pi}
$$

[For conformal systems, $P = e/3$ and $\Pi = 0.$]

Initial value can be calculated from free-streamed distribution function:

$$
\pi^{\mu\nu}\pi_{\mu\nu} = \int \frac{g \, d^3p}{(2\pi)^3 p^0} \int \frac{g \, d^3p}{(2\pi)^3 p'^0} \left[(\bm{p} \cdot \bm{p}')^2 - \frac{1}{3} \bm{p}^2 \bm{p}'^2 \right] f(\bm{p}) f(\bm{p}')
$$

The value at τ_0 (before onset of free-streaming) can be worked out exactly:

$$
\pi^{\mu\nu}\pi_{\mu\nu}\big|_{\tau_0} = \frac{2\pi^2}{3}C^2
$$
, $\mathcal{P} + \Pi = \frac{2\pi}{3}C$,

where $C \equiv \frac{\mathcal{L}}{\tau_0} \int \frac{1}{(2\pi)^3} \rho_\perp^2 d\rho_\perp \tilde{f}(\rho_\perp)$.

Hence, $\left. R^{-1} \right|_{\tau_{0}, \eta_{s}=0} = \sqrt{3/2} \approx 1.225.$

KOD KARD KED KED B YOUR

[Motivation](#page-1-0) [Pre-flow & Landau matching](#page-4-0) [Hydrodynamic evolution](#page-13-0) [Constraining](#page-21-0) τ_s [Parameter optimization](#page-26-0) [Conclusions](#page-33-0)
0000 00000000 0000

[Hydrodynamic ICs](#page-18-0)

Initial shear stress II:

Inverse shear Reynolds number after Landau matching

[Effects of free-streaming on hydro evolution](#page-19-0)

Effects of pre-flow on final radial flow

[Motivation](#page-1-0) [Pre-flow & Landau matching](#page-4-0) **[Hydrodynamic evolution](#page-13-0)** [Constraining](#page-21-0) τ_s [Parameter optimization](#page-26-0) [Conclusions](#page-33-0)
0000 0000000 0000000

Strong effect from pre-flow on final radial flow for all values of $\tau_s!$

 QQ

[Motivation](#page-1-0) [Pre-flow & Landau matching](#page-4-0) **[Hydrodynamic evolution](#page-13-0)** [Constraining](#page-21-0) τ_s [Parameter optimization](#page-26-0) [Conclusions](#page-33-0)
0000 000000 000000 0000

[Effects of free-streaming on hydro evolution](#page-20-0)

Effects of pre-flow on final flow anisotropy

Calculated by rotating for each event $\mathcal{T}^{\mu\nu}$ in transverse plane to maximize ϵ'_ρ or $\epsilon_\rho,$ respectively.

Not much effect from preflow on final momentum anisotropy unless $\tau_{\rm s}$ > 2 fm/c.

 QQ

画

 \sqrt{m} \rightarrow \sqrt{m} \rightarrow \sqrt{m} \rightarrow

Overview

[Motivation](#page-1-0)

[Free-streaming and Landau matching](#page-4-0)

- [Free-streaming](#page-5-0)
- **[Landau matching](#page-10-0)**
- **[Hydrodynamic evolution](#page-13-0)**
	- **[Hydrodynamic initial conditions after free-streaming](#page-14-0)**
	- **[Effects of free-streaming on hydro evolution](#page-19-0)**

4 [Constraining](#page-21-0) τ_s from data

- [A technical issue: how to treat the non-thermalized halo](#page-22-0)
- **[Constraining](#page-24-0)** τ_s
- [Parameter optimization](#page-26-0)
- **[Conclusions](#page-33-0)**

 QQ

÷

[Motivation](#page-1-0) [Pre-flow & Landau matching](#page-4-0) [Hydrodynamic evolution](#page-13-0) [Constraining](#page-21-0) τs [Parameter optimization](#page-26-0) [Conclusions](#page-33-0)

[A technical issue: how to treat the non-thermalized halo](#page-22-0)

Avoiding particle loss from the non-thermalized halo

For large τ_s we have a large halo of partons that never become part of the fluid since the density is too low \implies big problem, since we don't know how to convert them correctly to final hadrons, and we need hadron spectra to compute v_n

But we know how to account for their energy!

Way out: use energy flow rather than particle flow to define anisotropic flow coefficients!

 Ω

∢ 何 ▶ . ∢ ヨ ▶ . ∢ ヨ

[Motivation](#page-1-0) [Pre-flow & Landau matching](#page-4-0) [Hydrodynamic evolution](#page-13-0) [Constraining](#page-21-0) τs [Parameter optimization](#page-26-0) [Conclusions](#page-33-0)

[A technical issue: how to treat the non-thermalized halo](#page-23-0)

Anisotropic energy flow coefficients w_n as proxy for v_n

- $dE/dy d\phi$ receives contributions from Σ_{out} (non-thermalized parton halo) and $\Sigma_{\rm fo}$ (thermal emission from the liquid at freeze-out)
- **Anisotropic energy flow coefficients:**

$$
w_n e^{in\bar{\Psi}_n} = \frac{\int \frac{dE}{dy d\phi_p} e^{in\phi_p} d\phi_p}{\int \frac{dE}{dy d\phi_p} d\phi_p}
$$

- Plot shows that, for small τ_s when surface loss through Σ_{out} can be neglected, $v_n^{\pi,\mathcal{K},p}$ are all tightly linearly correlated with w_n for $n = 2, 3$.
- \Rightarrow use $w_{2,3}$ as proxy for $v_{2,3}$ for all τ_s

Constraints from elliptic and triangular flow

- Without pre-flow, $w_{2,3}$ drop quickly with increasing τ_s , due to decreasing initial eccentricity \Longrightarrow old lore: "Large anisotropic flow requires fast thermalization"
- $\overline{}$ With pre-flow, $w_{2,3}$ do not begin to decrease appreciably until $\tau_s > 2 \text{ fm}/c \Longrightarrow$ new lore: "Large anisotropic flow almost independent of τ_s unless $\tau_s > 2$ fm/c"
- For very weakly interacting pre-equilibrium stage, pre-flow more than compensates for the decrease in eccentricity during the first $2 fm/c$

 Ω

Mydrodynamic evolution **[Constraining](#page-21-0)** τ_s [Parameter optimization](#page-26-0) [Conclusions](#page-33-0)
0000000

[Constraining](#page-25-0) τ_s

Constraints from p_1 -spectra

■ Without pre-flow, \bar{v}_{fo} and $\langle p_{\perp} \rangle$ decrease with increasing $\tau_{\text{s}} \Longrightarrow$ old lore: "Without fast thermalization not enough radial flow"

- With pre-flow, $\bar{v}_{\rm fo}$ and $\langle p_{\perp} \rangle$ increase with increasing τ_s \Longrightarrow new lore: "Without fast thermalization too much radial flow"
- \implies Once pre-flow is properly accounted for, $\langle p_{\perp} \rangle$ yields tighter constraint [o](#page-26-0)[n](#page-20-0) τ_s than anisotropic flow (especially for [MC-](#page-24-0)[KL](#page-26-0)[N](#page-24-0) [in](#page-25-0)[it](#page-26-0)[ia](#page-23-0)[l](#page-24-0) [c](#page-25-0)on[di](#page-21-0)[ti](#page-25-0)o[ns\)](#page-0-0) QQ

Overview

[Motivation](#page-1-0)

[Free-streaming and Landau matching](#page-4-0)

- [Free-streaming](#page-5-0)
- **[Landau matching](#page-10-0)**
- **3** [Hydrodynamic evolution](#page-13-0)
	- **[Hydrodynamic initial conditions after free-streaming](#page-14-0)**
	- **[Effects of free-streaming on hydro evolution](#page-19-0)**

4 [Constraining](#page-21-0) τ_s **from data**

- [A technical issue: how to treat the non-thermalized halo](#page-22-0)
- **[Constraining](#page-24-0)** τ_s

5 [Parameter optimization](#page-26-0)

[Conclusions](#page-33-0)

D.

 QQ

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

Parameter optimization

In PRC 91 (2015) 064906 we published a parameter search analysis with pre-flow $+$ hydro only.

Here we use pre-flow $+$ VISHNU. We switch from VISH2+1 to URQMD 3.4 at $T_{\rm sw} = 155$ MeV.

Vary three parameters simultaneously that all have strong influence on spectra and anisotropic flow: τ_s , η/s , and the normalization factor for $(\zeta/s)(T)$.

Fit five observables measured in 2.76 A TeV Pb+Pb collisions at 10-20% centrality: $\langle v_2^{\rm ch}\rangle$, $\langle v_3^{\rm ch}\rangle$, $\langle \rho_\perp\rangle_{\pi^+}$, $\langle \rho_\perp\rangle_{K^+}$, $\langle \rho_\perp\rangle_p$.

[Motivation](#page-1-0) [Pre-flow & Landau matching](#page-4-0) [Hydrodynamic evolution](#page-13-0) [Constraining](#page-21-0) τs [Parameter optimization](#page-26-0) [Conclusions](#page-33-0)

Parameter optimization: MC-KLN ICs with pre-flow

Using MADAI tools (see poster by J. Bernhard, S. Moreland and S.A. Bass for a more elaborate analysis fitting 8 model parameters simultaneously to LHC Pb+Pb data):

[Motivation](#page-1-0) [Pre-flow & Landau matching](#page-4-0) [Hydrodynamic evolution](#page-13-0) [Constraining](#page-21-0) τs [Parameter optimization](#page-26-0) [Conclusions](#page-33-0)

Parameter optimization: MC-Glauber ICs with pre-flow

Using MADAI tools (see poster by J. Bernhard, S. Moreland and S.A. Bass for a more elaborate analysis fitting 8 model parameters simultaneously to LHC Pb+Pb data):

MC-KLN vs. MC-Glauber ICs with pre-equilibrium flow

MC-KLN with pre-equilibrium flow MC-Glauber with pre-equilibrium flow

重き Ulrich Heinz (Ohio State) [Pre-equilibrium dynamics](#page-0-0) Quark Matter 2015, 9/28/15 26 / 30

 \mathcal{A} .

 \leftarrow

 QQ

Optimal parameter sets

Mean values and 95% confidence intervals for the posterior parameter distributions

Ulrich Heinz (Ohio State) [Pre-equilibrium dynamics](#page-0-0) Quark Matter 2015, 9/28/15 27 / 30

イロト イ部 トイヨ トイヨト

 299

D.

[Motivation](#page-1-0) [Pre-flow & Landau matching](#page-4-0) [Hydrodynamic evolution](#page-13-0) [Constraining](#page-21-0) τ_s **[Parameter optimization](#page-26-0)** [Conclusions](#page-33-0)
0000 0000000 0000000

Spectra and $v_2(p_T)$ for best-fit parameter set

(Decay products from weak decays not included)

Pre-equil. flow may help to restore $p-\Lambda$ mass ordering of $v_2(p_T)!$

4 D F

 QQ

Overview

[Motivation](#page-1-0)

- [Free-streaming and Landau matching](#page-4-0)
	- [Free-streaming](#page-5-0)
	- **[Landau matching](#page-10-0)**
- **3** [Hydrodynamic evolution](#page-13-0)
	- **[Hydrodynamic initial conditions after free-streaming](#page-14-0)**
	- **[Effects of free-streaming on hydro evolution](#page-19-0)**
- **4 [Constraining](#page-21-0)** τ_s **from data**
	- [A technical issue: how to treat the non-thermalized halo](#page-22-0)
	- **[Constraining](#page-24-0)** τ_s
- [Parameter optimization](#page-26-0)

6 [Conclusions](#page-33-0)

画

 QQ

Conclusions

- **Inclusion of pre-equilibrium evolution in hydrodynamical modeling of heavy-ion** collisions is important.
- **Qualitatively different conclusions** as to how long the pre-equilibrium stage can last are obtained from comparisons with data when its effects on flow development are included.
- **Mean transverse momenta** of hadrons (radial flow) provide tighter upper limits on the duration τ_s of the pre-equilibrium stage than anisotropic flow coefficients.
- **Pre-equilibrium radial flow shortens** $URQMD$ stage and may help to restore $p-\Lambda$ mass ordering of $v_2(p_T)$.

 $=$ Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$