Pre-flow & Landau matching

Hydrodynamic evolution

Constraining τ_s Parameter optimization Conclusions

Pre-equilibrium evolution effects on heavy-ion collision observables

Ulrich Heinz

In collaboration with Jia Liu and Chun Shen

Reference: J. Liu, C. Shen and U. Heinz, PRC 91 (2015) 064906

Quark Matter 2015, 9/28/15

イロト 不得下 イヨト イヨト

Motivation	Pre-flow & Landau matching	Hydrodynamic evolution	Constraining τ_s	Parameter optimization	Conclusions
	000	0000000	0000		

Overview

Motivation

- 2 Free-streaming and Landau matching
 - Free-streaming
 - Landau matching
- 3 Hydrodynamic evolution
 - Hydrodynamic initial conditions after free-streaming
 - Effects of free-streaming on hydro evolution
- 4 Constraining τ_s from data
 - A technical issue: how to treat the non-thermalized halo
 - Constraining τ_s
- 5 Parameter optimization
- 6 Conclusions

- 4 同 6 4 日 6 4 日 6

Motivation	Pre-flow & Landau matching	Hydrodynamic evolution	Constraining τ_s 0000	Parameter optimization	Conclusions

Motivation

- Relativistic viscous hydrodynamics has become the workhorse of dynamical modeling of ultra-relativistic heavy-ion collisions
- Hydrodynamics does not become valid until the medium has reached a certain degree of local momentum isotropization
- In an inhomogeneous system, collective flow (i.e. space-momentum correlations) begin, however, to develop already before hydrodynamics becomes valid.
- The hydrodynamic stage thus starts with a non-vanishing pre-equilibrium flow.
- Goal: To perform a systematic study of pre-equilibrium flow effects on heavy-ion collision observables.

イロト 不得下 イヨト イヨト 二日

Weak vs. strong coupling

- Here: model pre-equilibrium stage by kinetic theory (no mean fields, no plasma instabilities)
- Weak coupling: very few collisions, long thermalization time: $\tau_s \gg \tau_0$
- Strong coupling: frequent collisions, very rapid thermalization:
 - $\tau_s \approx \tau_0$
- \implies Use τ_s to parametrize the rate of approach to hydrodynamic behavior;

model the period $\tau_0 < \tau < \tau_s$ by free-streaming massless degrees of freedom (extreme weak-coupling limit)

Ulrich Heinz (Ohio State)

Motivation	Pre-flow & Landau matching	Hydrodynamic evolution	Constraining τ_s	Parameter optimization	Conclusions
	000	0000000	0000		

Overview

1 Motivation

2 Free-streaming and Landau matching

- Free-streaming
- Landau matching

3 Hydrodynamic evolution

- Hydrodynamic initial conditions after free-streaming
- Effects of free-streaming on hydro evolution

4 Constraining τ_s from data

- A technical issue: how to treat the non-thermalized halo
- Constraining τ_s
- 5 Parameter optimization
- 6 Conclusions

- 4 同 6 4 日 6 4 日 6

Motivation	Pre-flow & Landau matching ●○○	Hydrodynamic evolution	Constraining τ_s 0000	Parameter optimization	Conclusions
Free-streaming	ng				
Free-s	streaming				

Collisionless BE: $p^{\mu}\partial_{\mu}f(x,p) = 0.$

Motivation	Pre-flow & Landau matching ●○○	Hydrodynamic evolution	Constraining τ_s 0000	Parameter optimization	Conclusions
Free-streami	ng				
Europe a					

Collisionless BE: $p^{\mu}\partial_{\mu}f(x,p) = 0.$

To match to VISH2+1, impose longitudinal boost invariance:

 $f(\mathbf{x}_{\perp},\eta_s,\tau; \mathbf{p}_{\perp},y) = \frac{\delta(y-\eta_s)}{\tau m_{\perp} \cosh(y-\eta_s)} \tilde{f}(\mathbf{x}_{\perp},\tau; \mathbf{p}_{\perp},y).$

Motivation	Pre-flow & Landau matching •00	Hydrodynamic evolution	Constraining τ_s 0000	Parameter optimization	Conclusions
Free-streami	ng				
-					

Collisionless BE: $p^{\mu}\partial_{\mu}f(x,p) = 0.$

To match to VISH2+1, impose longitudinal boost invariance:

 $f(\mathbf{x}_{\perp},\eta_s,\tau;\,\mathbf{p}_{\perp},y)=\frac{\delta(y-\eta_s)}{\tau m_{\perp}\cosh(y-\eta_s)}\tilde{f}(\mathbf{x}_{\perp},\tau;\,\mathbf{p}_{\perp},y).$

Assume massless degrees of freedom. Analytic soln. of collisionless BE:

 $f(\mathbf{x}_{\perp},\eta_s,\tau_s;\mathbf{p}_{\perp},y)=f(\mathbf{x}_{\perp}-(\tau_s-\tau_0)\hat{\mathbf{p}}_{\perp},\eta_s,\tau_0;\mathbf{p}_{\perp},y).$

Motivation	Pre-flow & Landau matching •00	Hydrodynamic evolution	Constraining τ_s 0000	Parameter optimization	Conclusions
Free-streami	ng				
-					

Collisionless BE: $p^{\mu}\partial_{\mu}f(x,p) = 0.$

To match to VISH2+1, impose longitudinal boost invariance:

$$f(\mathbf{x}_{\perp},\eta_s,\tau; \mathbf{p}_{\perp},y) = \frac{\delta(y-\eta_s)}{\tau m_{\perp} \cosh(y-\eta_s)} \tilde{f}(\mathbf{x}_{\perp},\tau; \mathbf{p}_{\perp},y).$$

Assume massless degrees of freedom. Analytic soln. of collisionless BE:

$$f(\mathbf{x}_{\perp},\eta_s,\tau_s;\mathbf{p}_{\perp},y)=f(\mathbf{x}_{\perp}-(\tau_s-\tau_0)\hat{\mathbf{p}}_{\perp},\eta_s,\tau_0;\mathbf{p}_{\perp},y).$$

Energy-momentum tensor $T^{\mu\nu}(x) = \frac{g}{(2\pi)^3} \int \frac{d^3p}{E} p^{\mu} p^{\nu} f(x, p)$

Motivation	Pre-flow & Landau matching ●○○	Hydrodynamic evolution	Constraining τ_s 0000	Parameter optimization	Conclusions
Free-streami	ng				
_					

Collisionless BE: $p^{\mu}\partial_{\mu}f(x,p) = 0.$

To match to VISH2+1, impose longitudinal boost invariance:

$$f(\mathbf{x}_{\perp},\eta_{s},\tau; \mathbf{p}_{\perp},y) = \frac{\delta(y-\eta_{s})}{\tau m_{\perp}\cosh(y-\eta_{s})}\tilde{f}(\mathbf{x}_{\perp},\tau; \mathbf{p}_{\perp},y).$$

Assume massless degrees of freedom. Analytic soln. of collisionless BE:

$$f(\mathbf{x}_{\perp},\eta_s,\tau_s;\mathbf{p}_{\perp},y)=f(\mathbf{x}_{\perp}-(\tau_s-\tau_0)\hat{\mathbf{p}}_{\perp},\eta_s,\tau_0;\mathbf{p}_{\perp},y).$$

Energy-momentum tensor $T^{\mu\nu}(x) = \frac{g}{(2\pi)^3} \int \frac{d^3p}{E} p^{\mu} p^{\nu} f(x, p)$

Need it only at midrapidity $\eta_s = 0$ (boost invariance):

$$T^{\mu\nu}(\mathbf{x}_{\perp},\eta_{s}=0,\tau)=\frac{1}{\tau}\int_{-\pi}^{\pi}d\phi_{p}\,\,\hat{\rho}^{\mu}\hat{\rho}^{\nu}F(\mathbf{x}_{\perp},\tau;\phi_{p}),$$

where

$$F(\mathbf{x}_{\perp},\tau;\phi_{p})=F_{0}(\mathbf{x}_{\perp}-(\tau-\tau_{0})\hat{\boldsymbol{p}}_{\perp})=\frac{g}{(2\pi)^{3}}\int_{0}^{\infty}p_{\perp}^{2}dp_{\perp}\tilde{f}(\mathbf{x}_{\perp}-(\tau-\tau_{0})\hat{\boldsymbol{p}}_{\perp},\tau_{0};\boldsymbol{p}_{\perp},\boldsymbol{0})$$

is independent of how \tilde{f} depends on the magnitude of p_{\perp} , and $F_0(x_{\perp})$ is the spatial distribution function at $\tau = \tau_0$.

Ulrich Heinz (Ohio State)

Motivation	Pre-flow & Landau matching ○●○	Hydrodynamic evolution	Constraining τ_s 0000	Parameter optimization	Conclusions
Landau mate	ching				

Landau matching I:

Hydrodynamic form of energy-momentum tensor:

$$T^{\mu
u}_{
m hyd}={\it eu}^{\mu}{\it u}^{
u}-({\cal P}+{\sf \Pi})\Delta^{\mu
u}+\pi^{\mu
u}$$

Flow vector = timelike eigenvector of $T^{\mu\nu}$: $T^{\mu\nu}u_{\nu} = eu^{\mu}$

LRF energy density *e* is the associated eigenvalue; pressure $\mathcal{P} = \mathcal{P}(e)$ from EOS.

Project with LRF spatial projector $\Delta_{\mu\nu} = g_{\mu\nu} - u_{\mu}u_{\nu}$ to get bulk viscous pressure Π :

$$\Pi = -\frac{1}{3} \text{Tr}(\Delta_{\mu\nu} T^{\mu\nu}) - \mathcal{P}$$

Use double projector $\Delta^{\mu\nu}_{\alpha\beta} \equiv \frac{1}{2} \left(\Delta^{\mu}_{\alpha} \Delta^{\nu}_{\beta} + \Delta^{\mu}_{\beta} \Delta^{\nu}_{\alpha} \right) - \frac{1}{3} \Delta^{\mu\nu} \Delta_{\alpha\beta}$ to get $\pi^{\mu\nu}$:

$$\pi^{\mu\nu} = \Delta^{\mu\nu}_{\alpha\beta} T^{\alpha\beta}$$

Alternatively $\pi^{\mu\nu} = T^{\mu\nu} - eu^{\mu}u^{\nu} + (\mathcal{P} + \Pi)\Delta^{\mu\nu}$.

Motivation Pre-flow & Landau matching Hydrodynamic evolution $Constraining \tau_s$ Parameter optimization Conclusions cooo

Landau matching II: Entropy generation and bulk pressure

Free-streaming preserves entropy (collisionless!)

After matching to hydro, entropy density is given by EOS from $s = \partial P / \partial T$

- \implies s jumps (increases) after Landau matching.
- For successful phenomenology, normalize entropy density profile after Landau matching such that, upon completion of the dynamical evolution, it correctly reproduces the observed final multiplicity dN_{ch}/dy .
- In spite of the entropy jump at τ_s , the normalization of the entropy density profile after Landau matching has a one-to-one relation with the normalization of the initial distribution function. Since the entropy jump depends on τ_s , so does the initial normalization. As τ_s is varied, the normalization is adjusted to preserve dN_{ch}/dy .

Motivation Pre-flow & Landau matching Hydrodynamic evolution $Constraining \tau_s$ Parameter optimization Conclusions cooo

Landau matching II: Entropy generation and bulk pressure

Free-streaming preserves entropy (collisionless!)

After matching to hydro, entropy density is given by EOS from $s = \partial P / \partial T$

- \implies s jumps (increases) after Landau matching.
- For successful phenomenology, normalize entropy density profile after Landau matching such that, upon completion of the dynamical evolution, it correctly reproduces the observed final multiplicity dN_{ch}/dy .
- In spite of the entropy jump at τ_s , the normalization of the entropy density profile after Landau matching has a one-to-one relation with the normalization of the initial distribution function. Since the entropy jump depends on τ_s , so does the initial normalization. As τ_s is varied, the normalization is adjusted to preserve dN_{ch}/dy .
- Since m = 0, $\Pi = 0$ in the free-streaming stage. Since EOS from latttice QCD breaks conformal symmetry, $\Pi \neq 0$ after Landau matching. We here set $\zeta = 0$ and let Π evolve back to zero with IS EOM over a short relaxation time τ_{Π}

イロト 不得 トイヨト イヨト 二日

Motivation	Pre-flow & Landau matching	Hydrodynamic evolution	Constraining τ_s	Parameter optimization	Conclusions
	000	000000	0000		

Overview

Motivation

- 2 Free-streaming and Landau matching
 - Free-streaming
 - Landau matching

3 Hydrodynamic evolution

- Hydrodynamic initial conditions after free-streaming
- Effects of free-streaming on hydro evolution

4 Constraining τ_s from data

- A technical issue: how to treat the non-thermalized halo
- Constraining τ_s
- 5 Parameter optimization
- 6 Conclusions

< 回 > < 三 > < 三 >

Initial LRF energy density profile after free-streaming:

Motivation Pre-flow & Landau matching Hydrodynamic evolution $\operatorname{Constraining} \tau_s$ Parameter optimization Conclusions $\operatorname{Conclusions}$ Hydrodynamic ICs

Initial radial flow after free-streaming:

$$\{\mathbf{v}_{\perp}\} = rac{\int d^2 r_{\perp} \gamma(\mathbf{r}_{\perp}) \, \mathbf{v}_{\perp}(\mathbf{r}_{\perp}) \, \mathbf{e}(\mathbf{r})_{\perp}}{\int d^2 r_{\perp} \gamma(\mathbf{r}_{\perp}) \, \mathbf{e}(\mathbf{r}_{\perp})},$$

 $\langle \mathbf{v}_{\perp}
angle = rac{1}{N_{events}} \sum_{i=1}^{N_{events}} \{\mathbf{v}_{\perp}\}^{(i)}.$

Rises initially very quickly, reaching 25% of speed of light after $1\,{\rm fm}/c$

Continues to grow over the next 5 fm/c at an approximate rate $\langle a_{\perp} \rangle \approx \frac{d\langle v_{\perp} \rangle}{d\tau_s} = 0.13 c^2/\text{fm}.$

Free-streaming should yield an upper limit for this radial pre-equilibrium flow.

Motivation	Pre-flow & Landau matching	Hydrodynamic evolution	Constraining τ_s 0000	Parameter optimization	Conclusions
Hvdrodvnam	ic ICs				

Initial eccentricities after free-streaming:

Eccentricities drive anisotropic flow:

$$\begin{aligned} \mathcal{E}_{n}(\tau_{s}) &= \epsilon_{n}(\tau_{s})e^{in\Phi_{n}(\tau_{s})} \\ &= -\frac{\int_{\tau_{s}}d^{3}\sigma_{\mu}(x) T_{\text{hyd}}^{\mu\nu}(x) u_{\nu}(x) r_{\perp}^{n} e^{in\phi}}{\int_{\tau_{s}}d^{3}\sigma_{\mu}(x) T_{\text{hyd}}^{\mu\nu}(x) u_{\nu}(x) r_{\perp}^{n}} \\ &= -\frac{\int d^{2}r_{\perp}\gamma(\mathbf{r}_{\perp}) e(\mathbf{r}_{\perp}) r_{\perp}^{n} e^{in\phi}}{\int d^{2}r_{\perp}\gamma(\mathbf{r}_{\perp}) e(\mathbf{r}_{\perp}) r_{\perp}^{n}}, \end{aligned}$$

(n > 1)

Note, this counts only contributions from fluid elements, not from cells that are already frozen out after Landau matching!

Inverse Reynold number measures importance of first-order viscous stress relative to ideal hydro pressure:

$$R^{-1} = \frac{\sqrt{\pi^{\mu\nu}\pi_{\mu\nu}}}{-\Delta^{\mu\nu}T_{\mu\nu}/3} = \frac{\sqrt{\pi^{\mu\nu}\pi_{\mu\nu}}}{\mathcal{P} + \Pi}$$

[For conformal systems, $\mathcal{P} = e/3$ and $\Pi = 0$.]

Initial value can be calculated from free-streamed distribution function:

$$\pi^{\mu\nu}\pi_{\mu\nu} = \int \frac{g \, d^3 p}{(2\pi)^3 p^0} \int \frac{g \, d^3 p}{(2\pi)^3 p'^0} \left[(\mathbf{p} \cdot \mathbf{p}')^2 - \frac{1}{3} \mathbf{p}^2 {\mathbf{p}'}^2 \right] f(p) f(p')$$

The value at τ_0 (before onset of free-streaming) can be worked out exactly:

$$\pi^{\mu
u}\pi_{\mu
u}\Big|_{ au_0}=rac{2\pi^2}{3}C^2,\qquad \mathcal{P}+\Pi=rac{2\pi}{3}C,$$

where $C \equiv \frac{g}{\tau_0} \int \frac{1}{(2\pi)^3} p_{\perp}^2 dp_{\perp} \tilde{f}(p_{\perp}).$

Hence, $R^{-1}|_{\tau_0,\eta_s=0} = \sqrt{3/2} \approx 1.225.$

Hydrodynamic ICs

Initial shear stress II:

Inverse shear Reynolds number after Landau matching

Effects of free-streaming on hydro evolution

Pre-flow & Landau matching

Effects of pre-flow on final radial flow

Hydrodynamic evolution

0000000

Constraining τ_s

Strong effect from pre-flow on final radial flow for all values of τ_s !

Ulrich Heinz (Ohio State)

Parameter optimization Conclusions

Division Pre-flow & Landau matching Hydrodynamic 000 00000€

Hydrodynamic evolution Con

Constraining τ_s

Parameter optimization Conclus

Effects of free-streaming on hydro evolution

Effects of pre-flow on final flow anisotropy

Calculated by rotating for each event $T^{\mu\nu}$ in transverse plane to maximize ϵ'_{ρ} or ϵ_{ρ} , respectively.

Not much effect from preflow on final momentum anisotropy unless $\tau_s > 2 \text{ fm}/c$.

Ulrich Heinz (Ohio State)

(人間) トイヨト イヨト

Motivation	Pre-flow & Landau matching	Hydrodynamic evolution	Constraining τ_s	Parameter optimization	Conclusions
	000	0000000	0000		

Overview

1 Motivation

- 2 Free-streaming and Landau matching
 - Free-streaming
 - Landau matching
- 3 Hydrodynamic evolution
 - Hydrodynamic initial conditions after free-streaming
 - Effects of free-streaming on hydro evolution
- 4 Constraining τ_s from data
 - A technical issue: how to treat the non-thermalized halo
 - Constraining τ_s
 - 5 Parameter optimization
- 6 Conclusions

< 回 ト < 三 ト < 三 ト

MotivationPre-flow & Landau matching
000Hydrodynamic evolution
0000000Constraining τ_s Parameter optimizationConclusion
 \bullet

A technical issue: how to treat the non-thermalized halo

Avoiding particle loss from the non-thermalized halo

For large τ_s we have a large halo of partons that never become part of the fluid since the density is too low \implies big problem, since we don't know how to convert them correctly to final hadrons, and we need hadron spectra to compute v_n

But we know how to account for their energy!

Way out: use energy flow rather than particle flow to define anisotropic flow coefficients!

Pre-flow & Landau matching A technical issue: how to treat the non-thermalized halo

Anisotropic energy flow coefficients w_n as proxy for v_n

Constraining τ_{e}

0000

- $dE/dyd\phi$ receives contributions from Σ_{out} (non-thermalized parton halo) and Σ_{fo} (thermal emission from the liquid at freeze-out)
- Anisotropic energy flow coefficients:

$$w_n e^{in\bar{\Psi}_n} = \frac{\int \frac{dE}{dyd\phi_p} e^{in\phi_p} d\phi_p}{\int \frac{dE}{dyd\phi_p} d\phi_p}$$

- Plot shows that, for small τ_s when surface loss through $\Sigma_{\rm out}$ can be neglected, $v_{n}^{\pi,K,p}$ are all tightly linearly correlated with w_n for n = 2, 3.
- \Rightarrow use $w_{2,3}$ as proxy for $v_{2,3}$ for all τ_s

Parameter optimization

Constraints from elliptic and triangular flow

- Without pre-flow, $w_{2,3}$ drop quickly with increasing τ_s , due to decreasing initial eccentricity \implies old lore: "Large anisotropic flow requires fast thermalization"
- With pre-flow, $w_{2,3}$ do not begin to decrease appreciably until $\tau_s > 2 \text{ fm}/c \implies$ new lore: "Large anisotropic flow almost independent of τ_s unless $\tau_s > 2 \text{ fm}/c$ "
- For very weakly interacting pre-equilibrium stage, pre-flow more than compensates for the decrease in eccentricity during the first 2 fm/c

(4) (3) (4) (4) (4)

Motivation	Pre-flow & Landau matching	Hydrodynamic evolution	Constraining τ_s 000 \bullet	Parameter optimization	Conclus

Constraining τ_s

Constraints from p_{\perp} -spectra

• Without pre-flow, \bar{v}_{fo} and $\langle p_{\perp} \rangle$ decrease with increasing $\tau_s \Longrightarrow$ old lore: "Without fast thermalization not enough radial flow"

- With pre-flow, ν

 {fo} and (p⊥) increase with increasing τ_s ⇒ new lore: "Without fast thermalization too much radial flow"
- \implies Once pre-flow is properly accounted for, $\langle p_{\perp} \rangle$ yields tighter constraint on τ_s than anisotropic flow (especially for MC-KLN initial conditions)

Ulrich Heinz (Ohio State)

Motivation	Pre-flow & Landau matching	Hydrodynamic evolution	Constraining τ_s	Parameter optimization	Conclusions
	000	0000000	0000		

Overview

Motivation

- 2 Free-streaming and Landau matching
 - Free-streaming
 - Landau matching
- 3 Hydrodynamic evolution
 - Hydrodynamic initial conditions after free-streaming
 - Effects of free-streaming on hydro evolution
- 4 Constraining τ_s from data
 - A technical issue: how to treat the non-thermalized halo
 - Constraining τ_s

5 Parameter optimization

6 Conclusions

3

Parameter optimization

In PRC 91 (2015) 064906 we published a parameter search analysis with pre-flow + hydro only.

Here we use pre-flow + $\rm VISHNU.$ We switch from $\rm VISH2+1$ to $\rm URQMD$ 3.4 at $T_{\rm sw}=155\,\rm MeV.$

Vary three parameters simultaneously that all have strong influence on spectra and anisotropic flow: τ_s , η/s , and the normalization factor for $(\zeta/s)(T)$.

Fit five observables measured in 2.76 A TeV Pb+Pb collisions at 10-20% centrality: $\langle v_2^{ch} \rangle$, $\langle v_3^{ch} \rangle$, $\langle p_{\perp} \rangle_{\pi^+}$, $\langle p_{\perp} \rangle_{\rho}$.

Pre-flow & Landau matching

Constraining τ_s

Parameter optimization

Parameter optimization: MC-KLN ICs with pre-flow

Using MADAI tools (see poster by J. Bernhard. S. Moreland and S.A. Bass for a more elaborate analysis fitting 8 model parameters simultaneously to LHC Pb+Pb data):

Ulrich Heinz (Ohio State)

Pre-equilibrium dynamics

Motivation Pre-flow & Landau matching 000

Hydrodynamic evolutio

Constraining τ_s 0000 Parameter optimization Conc

Parameter optimization: MC-Glauber ICs with pre-flow

Using MADAI tools (see poster by J. Bernhard. S. Moreland and S.A. Bass for a more elaborate analysis fitting 8 model parameters simultaneously to LHC Pb+Pb data):

Ulrich Heinz (Ohio State)

Pre-equilibrium dynamics

Quark Matter 2015, 9/28/15

MC-KLN vs. MC-Glauber ICs with pre-equilibrium flow

MC-KLN with pre-equilibrium flow

MC-Glauber with pre-equilibrium flow

- 4 ≣ ▶

< 17 ▶

Motivation	Pre-flow & Landau matching	Hydrodynamic evolution	Constraining τ_s	Parameter optimization	Conclusions
	000	000000	0000		

Optimal parameter sets

Model	Pre-eq.	$ au_{s}~({ m fm}/c)$	η/s	bulk norm.		
MC-KLN	Yes	0.644	0.138	0.554		
MC-KLN	No					
MC-Glb	Yes	1.340	0.151	0.554		
MC-Glb	No					
Best-fit parameters						

Model	Pre-eq.	$ au_{s}~({\sf fm}/c)$	η/s	bulk norm.
MC-KLN	Yes	0.381 (0-0.843)	0.133 (0.118-0.149)	0.248 (0-0.625)
MC-KLN	No	—		—
MC-Glb	Yes	1.51 (0.875-2.15)	0.151 (0.136-0.165)	0.714 (0.130-1.30)
MC-Glb	No			—

Mean values and 95% confidence intervals for the posterior parameter distributions

Ulrich Heinz (Ohio State)

Pre-equilibrium dynamics

Quark Matter 2015, 9/28/15

イロト イポト イヨト イヨト

27 / 30

3

Pre-flow & Landau matching Constraining τ_s Parameter optimization

Spectra and $v_2(p_T)$ for best-fit parameter set

(Decay products from weak decays not included)

Pre-equil. flow may help to restore $p-\Lambda$ mass ordering of $v_2(p_T)$!

Ulrich Heinz (Ohio State)

< 67 ▶

Motivation	Pre-flow & Landau matching	Hydrodynamic evolution	Constraining τ_s	Parameter optimization	Conclusions
	000	0000000	0000		

Overview

1 Motivation

- 2 Free-streaming and Landau matching
 - Free-streaming
 - Landau matching
- 3 Hydrodynamic evolution
 - Hydrodynamic initial conditions after free-streaming
 - Effects of free-streaming on hydro evolution
- 4 Constraining τ_s from data
 - A technical issue: how to treat the non-thermalized halo
 - Constraining τ_s
- 5 Parameter optimization

6 Conclusions

3

(人間) システン イラン

Motivation	Pre-flow & Landau matching	Hydrodynamic evolution	Constraining τ_s 0000	Parameter optimization	Conclusions

Conclusions

- Inclusion of pre-equilibrium evolution in hydrodynamical modeling of heavy-ion collisions is important.
- Qualitatively different conclusions as to how long the pre-equilibrium stage can last are obtained from comparisons with data when its effects on flow development are included.
- Mean transverse momenta of hadrons (radial flow) provide tighter upper limits on the duration τ_s of the pre-equilibrium stage than anisotropic flow coefficients.
- Pre-equilibrium radial flow shortens URQMD stage and may help to restore $p-\Lambda$ mass ordering of $v_2(p_T)$.

イロト 不得下 イヨト イヨト 二日