Jet suppression and the flavor dependence of partonic energy loss with ATLAS

Tomáš Kosek

for the ATLAS collaboration

The 25th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

September 27 - October 3 2015

IPNP, Charles University in Prague

- ATLAS presented several measurements showing strong modification of jet/track properties in HI collisions since the beginning of LHC run 1
- Studies of asymmetric dijet events, suppressed production of jets and charged tracks in Pb+Pb collisions, measurement of jet fragmentation modification published
- All of these measurements provided fruitful information on the partonic energy loss and its path length dependence

- The next step is to understand the flavor dependence of the energy loss
- The difference in quenching between quarks and gluons is not accessible in a straightforward way
- Relative number of quarks and gluons changes with pseudorapidity \to it's worth to study η dependence of the energy loss

ATLAS experiment

- ATLAS is multi-purpose detector well capable of measuring heavy-ion collisions
- Excellent tracking performance within $|\eta| < 2.5$. Combination of silicon pixel and strip detectors and transition radiation tracker.
- $\bullet\,$ Powerful calorimeter system with fine segmentation with η coverage up to $|\eta|<4.9$

More about calorimetry

- Calorimetry system is composed of electromagnetic, hadronic and liquid-argon (LAr) forward calorimeters
- High granularity LAr electromagnetic calorimeter covers range of $|\eta|<$ 3.2 and is composed of barrel and end-cap modules
- EM calorimeter is backed by hadronic calorimeter
- Allows for precise measurement of photons, electrons and jets
- \bullet Forward calorimeters are located in the range 3.1 $<|\eta|<$ 4.9, used for centrality bin selection

Centrality in Pb+Pb collisions

- In ATLAS, centrality is determined by the sum of $E_{\rm T}$ deposited in the FCAL calorimeter (3.1 < $|\eta|$ < 4.9)
- Events divided into successive percentiles of the $\sum E_{\mathrm{T}}^{\mathrm{FCal}}$

Tomáš Kosek

29 September 2015 6 / 23

• Variable that expresses the size of the suppression/enhancement is the so called $R_{\rm AA}$ defined as

$$R_{\rm AA} = \frac{\frac{1}{N_{\rm evt}} \frac{{\rm d}^2 N_{\rm Pb+Pb}}{{\rm d} \rho_{\rm T} {\rm d} y} \big|_{\rm centr}}{\langle T_{\rm AA} \rangle \frac{{\rm d}^2 \sigma_{pp}}{{\rm d} p_{\rm T} {\rm d} y}}$$

- Data samples: 2010 and 2011 Pb+Pb, 2011 and 2013 pp runs used
- Spectra were corrected for fake tracks, track reconstruction efficiency and momentum resolution (1D Bayesian unfolding)
- Spectra measured up to $p_{\mathrm{T}}{=}150~\mathrm{GeV}$

Charged particle spectra

• Charged particle spectra from pp and HI (scaled by $1/\langle T_{AA} \rangle$) binned in centrality (left) and pseudorapidity (right)

Charged particle R_{AA}

- Very strong suppression at intermediate $p_{\rm T},$ saturation at $p_{\rm T}\approx 60~{\rm GeV}$
- $\bullet\,$ No signs of η dependence

- Complementary measurement for charged track R_{AA}
- We measured R_{AA} for anti- k_t jets using 2011 Pb+Pb and 2013 pp run, MB and jet triggered samples were combined to get continuous jet spectra $32 < p_T < 500$ GeV
- Unfolding based on SVD method was used to account for detector effects

- Differential cross sections for the different rapidity ranges
- Differential per-event jet yield in Pb+Pb collisions divided by $1/\langle T_{AA} \rangle$ with *pp* jet cross sections
- Normalized Pb+Pb yields in central collisions significantly below the pp reference

- $R_{\rm AA}$ plots clearly show suppression down to \approx 0.5 for most central collisions
- Weak dependence of $R_{\rm AA}$ on the $p_{\rm T}$
- No significant dependence on the y observed

• Jet Fragmentation Functions (FF) $D(p_{\rm T})$ and D(z) are defined as

$$D(p_{\mathrm{T}}) = rac{1}{N_{\mathrm{jet}}} rac{\mathrm{d}N_{\mathrm{ch}}}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{ch}}} \qquad D(z) = rac{1}{N_{\mathrm{jet}}} rac{\mathrm{d}N_{\mathrm{ch}}}{\mathrm{d}z} \quad z = rac{p_{\mathrm{T}} \cdot p_{\mathrm{T}}^{\mathrm{jet}}}{|p_{\mathrm{T}}^{\mathrm{jet}}|^2}$$

- New FF measurement of R= 0.4 jets measured differentially in 4 η and 4 $p_{\rm T}^{\rm jet}$ bins
- $\bullet\,$ Jet substructure measured using charged tracks starting at $\rho_{\rm T}=1\,\,{\rm GeV}$
- Using *pp* as a reference
- FF are background subtracted, efficiency corrected and fully unfolded with 2-D Bayesian unfolding

$D(p_{\rm T})$ and D(z) distributions

- FF for pp and 6 centrality bins in 4 η regions
- Inclusive in $p_{\rm T}^{\rm jet}$

$D(p_{\rm T})$ Ratios (1)

ALTAS-CONF-2015-055

• $R_{D(p_{\rm T})}$ for 4 centralities in 4 η bins • Hint of η dependence at large $p_{\rm T}$ observed

$D(p_{\rm T})$ Ratios (2)

ALTAS-CONF-2015-055

• $R_{D(p_{\rm T})}$ for 4 centralities in 4 $p_{\rm T}^{\rm jet}$ bins

ullet No clear dependence on $p_{\mathrm{T}}^{\mathrm{jet}}$ except change of trends at highest p_{T}

FF - extra/missing particles

• To quantify the size of enhancement/suppresion, we calculated

$$N^{
m ch} \equiv \int_{p_{
m T,min}}^{p_{
m T,max}} \left(D(p_{
m T})|_{
m cent} - D(p_{
m T})|_{
m pp}
ight) {
m d}p_{
m T}$$
 (1)

- $N_{\rm part}$ dependence shown for three characteristic $p_{\rm T}$ regions
- ullet Tells how many extra/missing particles is in $p_{\rm T}$ range

FF - extra/missing momentum

 $\bullet\,$ To quantify the $p_{\rm T}$ flow, we calculated

$$P_{\rm T}^{\rm ch} \equiv \int_{\boldsymbol{p}_{\rm T,min}}^{\boldsymbol{p}_{\rm T,max}} \left(D(\boldsymbol{p}_{\rm T})|_{\rm cent} - D(\boldsymbol{p}_{\rm T})|_{\rm pp} \right) \, \boldsymbol{p}_{\rm T} \, \mathrm{d}\boldsymbol{p}_{\rm T}. \tag{2}$$

• Tells how much $p_{\rm T}$ is carried by extra/missing particles in given $p_{\rm T}$ range

• ATLAS measurement of charged particle $R_{\rm AA}$ shows modification

- strongly dependent on centrality
- strongly dependent on the track p_{T}
- \blacktriangleright no sign of η dependence observed
- Jet $R_{\rm AA}$ exhibits similar features but weaker dependence on jet $p_{
 m T}$
- Fragmentation functions show
 - Enhancement at low and high p_{T} , suppression at intermediate track p_{T}
 - no significant dependence on jet $p_{\rm T}$
 - no significant evolution with η except the largest track p_{T}

Backup

Centrality	0 - 10%	10 - 20%	20	0 - 30%	30	- 40%
$P_{\mathrm{T}}^{\mathrm{ch}}$ [GeV]	0.8 ± 0.7	0.9 ± 0.9	0.1 ± 1.0		-0.4 ± 1.2	
N ^{ch}	1.1 ± 0.1	1.0 ± 0.1	0	$.8\pm0.1$	0.	5 ± 0.1
Centrality	40 - 50%	50 - 60	%	60 - 80%		
$P_{\mathrm{T}}^{\mathrm{ch}}$ [GeV]	-0.1 ± 1.6	$5 -1.8 \pm 2$	-1.8 ± 2.1		-0.3 ± 2.7	
N ^{ch}	0.4 ± 0.1	0.1 ± 0.2		0.0 ± 0.2		

FF D(z) ratios (1)

FF D(z) ratios (2)

