γ production measurements in pp, p-Pb and Pb-Pb collisions with ALICE

Indranil Das
Saha Institute of Nuclear Physics
Science and Engineering Research Board

for the ALICE Collaboration
Outline

• **Physics Motivation @ LHC energies**

• **Experimental Setup**

• **Results**
 – pp collisions at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV
 – Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV
 – p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

• **Summary**
Motivation

• Quark Matter at extreme energy-density and formation of Quark Gluon Plasma (QGP)

• Quarkonium (c\bar{c} and b\bar{b}) suppression due to color screening [Matsui, Satz; PLB 178 (1986) 416]

• Sequential suppression [Digal, Satz, Vogt; PRC 85, (2012) 034906]

• Regeneration
 – The Q\bar{Q} production increases strongly with energy

<table>
<thead>
<tr>
<th>In most central collisions [0-10%]</th>
<th>RHIC 200 GeV</th>
<th>LHC 2.76 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{ccbar}/event</td>
<td>13</td>
<td>115</td>
</tr>
<tr>
<td>N_{bbbar}/event</td>
<td>0.1</td>
<td>3</td>
</tr>
</tbody>
</table>

Different sources of medium effects

- **Nuclear modification factor** R_{AA}:

 Ratio of the quarkonium yield in A-A (Y_{AA}) and the pp cross section, scaled by the nuclear overlap function T_{AA} (from Glauber model)

 $$R_{AA} = \frac{Y_{AA}}{\langle T_{AA} \rangle \sigma_{pp}}$$

 If yield scales with the number of binary collisions

 $\rightarrow R_{AA} = 1$

 Medium effects will increase or decrease R_{AA}

 Hot Medium effects:
 - Quarkonium suppression ($R_{AA} \downarrow$)
 - Enhancement due to regeneration ($R_{AA} \uparrow$)

 Cold Nuclear Matter effects (CNM):
 - Nuclear parton shadowing/gluon saturation
 - Parton energy loss
 - Nuclear break-up

 pp collisions:

 Reference for p-Pb and Pb-Pb studies

 Constrain on theoretical models

 p-A collisions are used to study the CNM effects since the QGP is not expected
ALICE setup

VZERO is composed of two sets of detectors, VZERO-C (-3.7 < η < -1.7) whose pseudo-rapidity coverage overlaps with Muon Spectrometer and VZERO-A (2.8 < η < 5.1)

ALICE measures bottomonium resonances down to $p_T \sim 0$ at forward rapidity in the dimuon channel

Also see related presentations
Pereira Da Costa: Charmonium production in Pb-Pb collisions with ALICE at the LHC (29th Sept, Quarkonia II)
Leoncino: J/ψ and ψ(2S) production in p-Pb collisions with ALICE at the LHC (28th Sept, Quarkonia I)
Martinez-Garcia: Observation of a J/ψ yield enhancement at very low p_T in Pb-Pb collisions at 2.76 TeV (30th Sept, Quarkonia IV)
pp results at $\sqrt{s} = 7$ TeV

- Quarkonium measurements in pp collisions allow one to test the production models
- NRQCD and CSM (better for NNLO at high p_T) models are in agreement with the data within uncertainties [Phys. Rev. D 84, 114001 (2011) and Nucl. Phys. A 470, 910 (2013)]

- CSM: On-shell perturbative production of Q and \bar{Q}
- NRQCD: Systematic expansion of $Q\bar{Q}$ wavefunction in strong coupling constant and the relative velocity of $Q\bar{Q}$.

![Graphs showing measurements in pp collisions at $\sqrt{s} = 7$ TeV]
pp results at $\sqrt{s} = 8$ TeV

- First measurement of $\Upsilon(3S)$ with ALICE
- ALICE measurements are in agreement with LHCb [arXiv:1509.02372] as function of p_T and y (in both cases the difference do not exceed 1.5σ).

```
28-Sep-15
Y measurements with ALICE, QM-15, I. Das
```
A strong suppression has been observed in the inclusive measurement of $\Upsilon(1S)$ state in heavy-ion collision at forward rapidity (2.5<y<4.0)

Note the feed-down to $\Upsilon(1S)$ is approximately 30% from higher mass bottomonia [LHCb : Eur.Phys.J. C74 (2014) 3092].
\(\gamma(1S) \) \(R_{AA} \) in \(\text{Pb-Pb} \) collisions

The recent preliminary results by CMS indicate a stronger suppression compared to earlier measurement and are now is in closer agreement with ALICE results.
$\Upsilon(1S)$ R_{AA} in Pb-Pb collisions: model comparison

M. Strickland, [arXiv:1207.5327]

- Thermal suppression of bottomonium states
- Anisotropic hydrodynamic model
- Two temperature rapidity profiles:
 - Boost invariant or Gaussian
- Three shear viscosities
- Feed down from higher mass states included
- No CNM included
- No regeneration included

Model underestimates the $\Upsilon(1S)$ suppression at forward rapidity
γ(1S) R_{AA} in Pb-Pb collisions: model comparison

Updated calculations show a softer rapidity trend. The remaining difference at forward rapidity could be explained by CNM effects missing in the model.

M. Strickland, [New predictions arXiv:1507.03951]
M. Strickland, [arXiv:1207.5327]
\(\Upsilon(1S) \) \(R_{AA} \) in Pb-Pb collisions: model comparison

A. Emerick et al., [EPJ A48 (2012) 72]

- Transport model
- Suppression of \(\Upsilon(1S) \) resonances by the QGP
- Small regeneration component included
- Feed down from higher mass states included
- CNM included via an “effective” \(\sigma_{abs} = 0\text{–}2 \text{ mb} \)

Model underestimates the \(\Upsilon(1S) \) suppression at forward rapidity
The recent preliminary results by CMS indicate a stronger suppression compared to earlier measurement and now is in closer agreement with ALICE results.
Results in p-Pb collisions

Forward rapidity

2.03 < \(y_{\text{cms}} \) < 3.53 \(L \sim 5.03 \text{ nb}^{-1} \)

\[\Delta y = 0.465 \] in the direction of the proton beam

Nuclear modification factor \(R_{\text{pPb}} \):

\[R_{\text{pPb}} = \frac{\sigma_{\text{pPb}}}{A_{\text{Pb}} \cdot \sigma_{\text{pp}}} \]

pp data at \(\sqrt{s} = 5.02 \text{ TeV} \) are not available

Reference cross section is obtained using an energy interpolation procedure [ALICE-PUBLIC-2014-002, LHCb-CONF-2014-003].
Suppression of \(\Upsilon(1S) \) at forward rapidity with respect to pp reference, while the backward rapidity measurement is compatible with no suppression.

ALICE and LHCb \(R_{pPb} \) are compatible, with LHCb results being systematically larger.
R_{pPb} of $\Upsilon(1S)$: model comparisons

- **Ferreiro et al. [EPJC 73 (2013) 2427]**
 - 2→2 production model at LO
 - EPS09 shadowing parameterization at LO
 - Fair agreement with the measured R_{pPb}
 - Although slightly overestimates it in the antishadowing region

- **Fuji et al. [Nucl. Phys. A 915 (2013) 1]**
 - CGC + CEM production model
 - Slightly underestimates the R_{pPb} at forward rapidity

Model underestimates the $\Upsilon(1S)$ suppression at backward rapidity
R_{pPb} of $\gamma(1S)$: model comparisons

- **Arleo et al. [JHEP 1303 (2013) 122]**
 - Model including a contribution from coherent parton energy loss
 - With or without shadowing (EPS09)
 - Forward: better agreement with ELoss and shadowing
 - Backward: better agreement with ELoss only

 - CEM production model at NLO
 - EPS09 shadowing parameterization at NLO
 - Fair agreement with measured R_{pPb} within uncertainties
 - Although it slightly overestimates the measurement
Summary

• ALICE findings in pp collisions:
 – Constrain on theoretical models
 – Consistent results with other LHC experiments

• ALICE findings in Pb-Pb collisions:
 – **Strong suppression** of $\Upsilon(1S)$ at forward rapidity.
 – The R_{AA} of $\Upsilon(1S)$ shows a **stronger** suppression in **central** than **peripheral** collisions.
 – The **feed-down** of higher states **are not able to account** for the measured **suppression** of $\Upsilon(1S)$.
 – The strong suppression of $\Upsilon(1S)$ constrains the **sequential suppression models**.
 – The $\Upsilon(1S)$ suppression is **stronger at forward** than at mid-rapidity. However, recent CMS preliminary data show a better agreement with our data yielding a **softer rapidity dependence**.

• ALICE p-Pb results:
 – A **suppression** of $\Upsilon(1S)$ production is observed at **forward rapidity**.
 – At **backward rapidity** it is consistent with **unity**, suggesting small gluon anti-shadowing.
 – Pure **nuclear shadowing** and/or (coherent) **energy loss models** seem to **overestimate** the measured **nuclear modification factor**.
Thank You
The R_{FB} of $\Upsilon(1S)$ is larger than the one of J/ψ and compatible with unity. All available models are compatible with the measured R_{FB} within the large experimental uncertainties (shown in left side figure).
• Comparison with earlier results of ALICE (results in nb)

<table>
<thead>
<tr>
<th></th>
<th>$\Upsilon(1S)$</th>
<th>$\Upsilon(2S)$</th>
<th>$\Upsilon(3S)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 TeV</td>
<td>$54 \pm 5 \pm 7$</td>
<td>$18 \pm 4 \pm 3$</td>
<td>-</td>
</tr>
<tr>
<td>8 TeV</td>
<td>$68 \pm 6 \pm 7$</td>
<td>$25 \pm 5 \pm 4$</td>
<td>$9 \pm 4 \pm 1$</td>
</tr>
</tbody>
</table>