Femtoscopy of identified particles in Pb-Pb collisions with ALICE at the LHC

Malinina Ludmila
SINP MSU-JINR
for the ALICE collaboration

Sep. 2015, QM 2015, Kobe, Japan
XXV International Conference on Ultrarelativistic Nucleus-Nucleus Collisions, Kobe, Japan
Overview

- Introduction
- Motivation
- ALICE at LHC
- Analysis details
- Results
 - 1D analysis of $\pi^\pm\pi^\pm$, $K^\pm K^\pm$, $K^0_s K^0_s$, pp and \bar{pp}
 - 3D analysis of $\pi^\pm\pi^\pm$, $K^\pm K^\pm$
- Summary
Introduction

Correlation femtoscopy: measurement of space-time characteristics $R, c\tau \sim \text{fm}$ of particle production using particle correlations due to the effects of quantum statistics (QS) and final state interactions (FSI).

- Two particle Correlation Function (CF):
 - Theory: $\mathcal{C}(q) = \frac{N_2(p_1, p_2)}{N_1(p_1) \cdot N_2(p_1)}, \mathcal{C}(\infty) = 1$
 - Experiment: $\mathcal{C}(q) = \frac{S(q)}{B(q)}, q = p_1 - p_2$
 - $S(q)$ – pairs from same event
 - $B(q)$ – pairs from different event

- Parametrization:
 - 1D: $\mathcal{C}(q_{\text{inv}}) = 1 + \lambda \exp(-R^2 q_{\text{inv}}^2), R$ Gaussian radius in Pair Rest Frame (PRF), λ correlation strength parameter
 - 3D: $\mathcal{C}(q_{\text{out}}, q_{\text{side}}, q_{\text{long}}) = 1 + \lambda \exp(-R^2_{\text{out}} q_{\text{out}}^2 - R^2_{\text{side}} q_{\text{side}}^2 - R^2_{\text{long}} q_{\text{long}}^2)$

where both R and q are in Longitudinally Co-Moving Frame (LCMS) long \parallel beam; out \parallel transverse pair velocity v_T; side normal to out,long
Femtoscopy
- Measure the spatial & temporal characteristics of the particle emitting regions
- Study collective dynamics, radial flow
- Put constraints on system evolution models, e.g. timescales & scattering parameters

Femtoscopy of heavier particles - complement to ππ
- Strong constraints for hydrodynamic models predictions: they should work for heavier mesons and baryons.
- Check for m_T dependence -> determine freeze-out conditions
- Possibility to distinguish between different model scenario
Motivation: m_T-dependence of correlation radii

- "m_T-scaling": $R \sim m_T^a$, $m_T = \sqrt{m^2 + p_T^2}$

 - Negligible transverse flow
 - Longitudinal boost invariance
 - Common freeze-out

- Approximate "m_T-scaling" for different particle species for $R_{\text{long}}, R_{\text{side}}, R_{\text{out}}$ with different a was predicted in (A. Kisiel, M. Galazyn, P. Bozek, Phys. Rev. C 90 (2014) 064914)
 - Indication of flow dominated freeze-out scenario

- Strong violation of "m_T-scaling" was predicted in (V.M. Shapoval, P. Braun-Munzinger, Iu.A. Karpenko, Yu.M. Sinyukov, Nucl. Phys. A 929 (2014) 1.) due to:
 - Strong transverse flow & resonance decays influence & rescattering phase
 - "k_T-scaling" was predicted instead

- Extraction of emission time from fit $R_{\text{long}}^2(m_T)$ using formula generalized for any strong transverse flow (Yu. Sinyukov, V. Shapoval, V. Naboka, arxiv:1508.01812),
 - Once more indication on importance of rescattering phase
ALICE detector

- **Main tracking detector:** Time Projection Chamber (TPC)
- **Vertexing and tracking:** Inner Tracking System (ITS)
- **Centrality determination:** V0
- **Particle identification (PID):**
 - TPC (energy loss)
 - Time-of-Flight (TOF)
\(K^\pm \) and \(K^0_s \) CFs

Results from ArXiv.org:1506.07884

- Example \(K^\pm K^\pm \) & \(K^0_s K^0_s \) CFs are shown
- CFs corrected for momentum resolution and purity
- Bose-Einstein enhancement seen for both
- Coulomb FSI seen in drop at low \(q \) in \(K^\pm K^\pm \)
- Strong FSI seen in dip below \(C=1 \) in \(K^0_s K^0_s \)

Curves corresponds to best fit:

\[K^\pm K^\pm : \text{Bowler-Sinyukov formula:} \]

\[C(q) = N \left[1 - \lambda + \lambda K(q) \left(1 + \exp \left(-R_{inv}^2 q^2 \right) \right) \right], \]

\(N \) norm. factor, \(\lambda \) correlation strength, \(K(q) \) symmetrized Coulomb factor

\[K^0_s K^0_s : \text{ } C(q) = N \left[1 - \lambda + \lambda C'(q) \right], \]

\[C'(q) = 1 + \exp \left(-R_{inv}^2 q^2 \right) + C_{\text{strongFSI}}(q, R) \]

Strong FSI due to resonances \(f_0(980) \) and \(a_0(980) \)
Results from ArXiv.org:1506.07884

- Example \(pp\) CF is shown
- CF corrected for momentum resolution and purity
- Coulomb FSI seen in drop at low \(q\)
- Strong FSI seen in maximum at \(q\sim40\) MeV/c
- Curves correspond to best fit:

\[
C_{\text{meas}}(q_{pp}) = 1 + \lambda_{pp}(C_{pp}(q_{pp}; R) - 1) + \lambda_{p\Lambda}(C_{p\Lambda}(q_{pp}; R) - 1),
\]

- QS, Coulomb and Strong FSI are included in the fit; residual \(p\Lambda\) correlations are taken into account

- \(0.7<p_T<4.0\) GeV/c, \(|\eta|<0.8\), TPC and TOF\((p>0.8\text{GeV/c})\) nσ PID \((n<3)\)
- Purity >95%
R_{inv} radii vs m_T for $\pi^\pm\pi^\pm$, $K^\pm K^\pm$, $K^0_s K^0_s$, pp and $p\bar{p}$

Results from ArXiv.org:1506.07884

- R_{inv} and λ for $\pi^\pm\pi^\pm$, $K^\pm K^\pm$, $K^0_s K^0_s$, pp and $p\bar{p}$ vs m_T for several centralities
- Radii decrease with $m_T \to$ radial flow
- Increase size with increasing centrality \to simple geometric picture of the collisions.
- $R_{\pi} > R_{K}$ due to pion Lorentz factor
- R_p compatible with R_K at same m_T

- All λ lie mostly in 0.3-0.7 due to long-lived resonances, non-Gaussian shape.
- No significant centrality dependence
- λ_{π} are lower than λ_K due to the stronger influence of resonances
$K^\pm K^\pm$ and $K^0_s K^0_s$ in Pb-Pb: HKM model

Results from ArXiv.org:1506.07884

- R and λ for $\pi^\pm \pi^\pm$, $K^\pm K^\pm$, $K^0_s K^0_s$, pp for 0-5% centrality
- Radii for kaons show good agreement with HKM predictions for $K^\pm K^\pm$
 (Nucl.Phys.A929 (2014))

- λ decreases with k_T, both data and HKM
- HKM prediction for λ slightly overpredicts the data
- λ_π are lower λ_K due to the stronger influence of resonances
R_{side} shows approximate m_T scaling;

R_{out}, R_{long} of K are larger than those of $\pi \rightarrow m_T$ scaling is broken;

This difference increases for more central collisions;

The effect is more important for R_{long}.
Radii scale better with k_T than with m_T according with HKM predictions
Similar observations were reported by PHENIX at RHIC (arxiv:1504.05168).
\(R_{\text{out}} / R_{\text{side}} \) vs \(m_T \) for \(K^\pm K^\pm \) & \(\pi \pi \)

Pion results from ArXiv.org:1507.06842

\[R_{\text{out}} / R_{\text{side}} (\pi) \sim 1 \text{ for low } k_T; \text{ slowly decreasing with } k_T \]

\[R_{\text{out}} / R_{\text{side}} (\pi) \text{ smaller than at RHIC (1.1) } \rightarrow \text{ stronger radial flow (x:p correlations)} \]

Indication: \(R_{\text{out}} / R_{\text{side}} (K) > R_{\text{out}} / R_{\text{side}} (\pi) \) → different x:p correlations for pions and kaons

Similar observations were reported by PHENIX at RHIC (arxiv:1504.05168).
Comparison with (3+1)D Hydro+THERMINATOR2

Good description of pion radii vs. m_T

Underestimation of kaon radii

Model demonstrates approximate $R \sim m_T^a$ scaling for π & K, with “a” being different for $R_{\text{out}}, R_{\text{side}}, R_{\text{long}}$. (A. Kisiel, M. Galazyn, P. Bozek, Phys.Rev. C90 (2014) 064914)
Comparison with HKM for 0-5% centrality

HKM model w/o re-scatterings demonstrates approximate m_T scaling for π & K, but does not describe ALICE π & K data.

HKM model slightly underestimates R_{side} → overestimates $R_{\text{out}} / R_{\text{side}}$ ratio for π.
Extraction of emission time from fit $R_{\text{long}}^2(m_T)$

The new formula for extraction of the maximal emission time for the case of strong transverse flow was used (Yu. Sinyukov, V.Shapoval, V.Naboka, arxiv:1508.01812)

The parameters of freeze-out: T and “intensity of transverse flow”, α were fixed by fitting π and K spectra (arxiv:1508.01812)

Indication: $\tau_\pi < \tau_K$. Possible explanations (arxiv:1508.01812): HKM includes re-scatterings (UrQMD cascade): e.g. $K\pi \rightarrow K^*(892) \rightarrow K\pi$, $KN \rightarrow K^*(892)X$; ($K^*(892)$ lifetime 4-5 fm/c) $[\pi N \rightarrow N^*(\Delta)X$, $N^*(\Delta) \rightarrow \pi X$ (N^*(s(Δs))- short lifetime)]

Sep. 2015, L.V. Malinina

QM2015, Kobe, Japan 15
Summary

1D $\pi^\pm\pi^\pm, K^\pm K^\pm$, $K_0^s K_0^s, \bar{p}p, \bar{p}p$ and 3D $\pi^\pm\pi^\pm, K^\pm K^\pm$
femtoscopic radii were measured for several centrality and m_T bins in Pb-Pb collisions at 2.76 TeV.

The study performed by ALICE Collaboration on the femtoscopic correlations of heavy particles is a good compliment to the pion femtoscopy as it allows one to distinguish between different model scenarios.

Importance of hadronic rescattering phase for explanation of breaking of m_T-scaling was shown.
Additional slides
K^\pm and K^0_s PID (ArXiv.org: 1506.07884)

K$^\pm$: $0.15 < p_T < 1.5$ GeV/c, $|\eta| < 0.8$, TCP and TOF ($p > 0.5$ GeV/c) $N\sigma$ PID ($N < 3$)

- Single and pair purity: main contamination ($0.4 < p < 0.5$ GeV/c) comes from e^\pm

K^0_s: $\rightarrow \pi^+\pi^-$ ($c\tau = 2.7$ cm)

- Daughter π: $p_T > 0.15$ GeV/c, $|\eta| < 0.8$
- TPC and TOF ($p > 0.8$ GeV/c) $N\sigma$ PID
- K^0_s: $|\eta| < 0.8$, $\pi^+\pi^-$ DCA < 0.3 cm,
- DCA to prim. vertex < 0.3 cm
- decay length < 30 cm, \cos (point. angle) > 0.99
- $0.48 < m_{\pi\pi} < 0.515$ GeV/c2; Purity $> 95%$

Sep. 2015, L.V. Malinina

QM2015, Kobe, Japan