Measurements of Correlations of Anisotropic Flow Harmonics in Pb–Pb Collisions with ALICE

You Zhou (周铀)

Niels Bohr Institute
(on behalf of the ALICE Collaboration)
The magnitudes of the Flow-vector, anisotropic flow harmonics \(v_n \), have been measured in great details (centrality, \(p_T \), \(\eta \), PID)

- constraints on the initial conditions, \(\eta/s \), EoS, freeze-out conditions et al.

The fluctuations of each individual flow harmonics have been measured.
The fluctuations of each individual flow harmonic have been investigated.

- further understanding of underlying p.d.f. of v_n distributions
Correlations between \vec{V}_m and \vec{V}_n

- **Flow angle correlations**: ψ_m and ψ_n correlations (have been studied)

- **Flow magnitude correlations**: v_m and v_n correlations
 - Does v_m and v_n correlated? anti-correlated? or not correlated?
 - How can we investigate the relationship of v_m and v_n without contribution from ψ_m and ψ_n?

- 5-particle cumulant

- $Pb-Pb$ $S_{NN} = 2.76$ TeV $|\eta| < 0.8$ $0.2 \leq p_T < 5$ GeV/c
Correlations of v_m and v_n

A linear correlation coefficient $c(v_m, v_n)$ was proposed to study the correlations between v_m and v_n:

$$c(v_m, v_n) = \frac{\langle (v_m - \langle v_m \rangle_{ev})(v_n - \langle v_n \rangle_{ev}) \rangle}{\sigma_{v_n} \sigma_{v_m}}_{ev}$$

• This correlation function is 1 (-1) if a and b are linearly (anti-linearly) correlated and zero in the absence of linear correlation.

• negative correlations of $c(v_2, v_3)$ and positive correlations of $c(v_2, v_4)$

• $c(v_2, v_3)$ is sensitive to initial conditions and insensitive to η/s, $c(v_2, v_4)$ is sensitive to both

• $c(v_m, v_n)$ is a new observable to constrain initial conditions and η/s.

• However, this observable cannot be accessible easily in flow measurements which relying on two- and multi-particle correlations.
New observable:

Symmetric 2-harmonic 4-particle Cumulants, SC(m,n), measures the correlations of \(v_m\) and \(v_n\)

\[
\langle\langle\cos(m\varphi_1 + n\varphi_2 - m\varphi_3 - n\varphi_4)\rangle\rangle_c
\]

\[
= \langle\langle\cos(m\varphi_1 + n\varphi_2 - m\varphi_3 - n\varphi_4)\rangle\rangle - \langle\langle\cos[m(\varphi_1 - \varphi_2)]\rangle\rangle \langle\langle\cos[n(\varphi_1 - \varphi_2)]\rangle\rangle
\]

\[
= \langle v_m^2 v_n^2 \rangle - \langle v_m^2 \rangle \langle v_n^2 \rangle.
\]

By construction not sensitive to:

- non-flow effects, due to usage of 4-particle cumulant
- inter-correlations of various symmetry planes (\(\Psi_m\) and \(\Psi_n\) correlations)

It is non-zero if the event-by-event amplitude fluctuations of \(v_m\) and \(v_n\) are (anti-)correlated.

- more details, see Section IV in:

In previous AMPT study, it predicted a positive SC(4,2) and negative SC(3,2), the signs of SC(m,n) in the final state seem to be determined by SC(m,n)\(\epsilon\) in the initial state.
In previous AMPT study, it predicted a positive SC(4,2) and negative SC(3,2), the signs of SC(m,n) in the final state seem to be determined by SC(m,n) in the initial state.

Both the partonic and hadronic interactions contribute to the magnitudes of SC(m,n).
In previous AMPT study, it predicted a positive $\text{SC}(4,2)$ and negative $\text{SC}(3,2)$, the signs of $\text{SC}(m,n)$ in the final state seem to be determined by $\text{SC}(m,n)_\varepsilon$ in the initial state.

Both the partonic and hadronic interactions contribute to the magnitudes of $\text{SC}(m,n)$.

$\text{SC}(m,n)$, a new observable to constrain initial conditions and the properties of the system.
Analysis Details

❖ Detectors used:
- **Inner Tracking System** (trigger, tracking and vertexing)
- **Time Projection Chamber** (tracking, centrality determination)
- **V0 detectors** (trigger, centrality determination)

❖ Data sample:
- **Pb-Pb at** $\sqrt{s_{NN}} = 2.76$ TeV
 - ~ 12 M events analyzed
- **Tracks used:**
 - $-0.8 < \eta < 0.8$
 - $0.2 < p_T < 5.0$ GeV/c
The positive values of SC(4,2) and negative SC(3,2) are observed for all centralities.

- suggests a correlation between v_2 and v_4, and an anti-correlations between v_2 and v_3.
- indicates finding $v_2 > \langle v_2 \rangle$ in an event enhances the probability of finding $v_4 > \langle v_4 \rangle$ and finding $v_3 < \langle v_3 \rangle$ in that event.
Non-flow contributions?

- SC(m,n) calculations from HIJING
- It is found that $\langle v_m^2 v_n^2 \rangle > 0$ and $\langle v_m^2 \rangle \langle v_n^2 \rangle > 0$ in HIJING, but SC(m,n) are compatible with zero
 - suggests SC measurements are nearly insensitive to non-flow effects.
- non-zero values of SC measurements cannot be explained by non-flow effects, thus confirms the existence of (anti-)correlations between v_m and v_n harmonics.
Contributions from the initial state?

Comparisons to MC-Glauber model calculations

- $\text{SC}(m,n)_\varepsilon$ from MC-Glauber model using weights of wounded nucleon (WN) and binary collisions (BC) weights are scaled and compared to data.

- Increasing trend from central to peripheral collisions with different signature has been observed for $\text{SC}(4, 2)_\varepsilon$ and $\text{SC}(3, 2)_\varepsilon$, the centrality dependence of corresponding measurements cannot be captured well.

- Correlations in the initial conditions are not the only contribution to SC measurements.
vn harmonics and hydrodynamics

H. Niemi, arXiv: 1505.02677

<table>
<thead>
<tr>
<th>Tmin/MeV</th>
<th>(η/s)min</th>
<th>η/s(100 MeV)</th>
<th>η/s(500 MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>param1</td>
<td>150</td>
<td>0.12</td>
<td>0.24</td>
</tr>
<tr>
<td>param2</td>
<td>180</td>
<td>0.16</td>
<td>0.36</td>
</tr>
<tr>
<td>param4</td>
<td>180</td>
<td>0.12</td>
<td>0.76</td>
</tr>
</tbody>
</table>

Various settings of η/s in hydro calculations have been investigated
- standard flow measurements are not very sensitive to η/s(T) at least for central- and mid-central collisions.

IC: perturbative QCD + saturation model
(also known as EKRT)

ALICE: PRL107, 032301
Comparison of SC measurements to hydrodynamic calculations

- Although hydro describes the v_n fairly well, there is no a single centrality for which a given η/s parameterization describes simultaneously SC(4,2) and SC(3,2).
- SC measurements provide stronger constrains on the η/s in hydro than standard v_n measurements alone.
Better sensitivity to η/s

Comparison of SC measurements to hydrodynamic calculations

- Although hydro describes the v_n fairly well, there is no a single centrality for which a given η/s parameterization describes simultaneously SC(4,2) and SC(3,2).
- SC measurements provide stronger constrains on the η/s in hydro than standard v_n measurements alone.
Assuming $v_n \propto \varepsilon_n$ in the central collisions, the SC(m,n) after scaling might be able to describe SC(m,n) measurements.

Comparison to MC-Glauber calculations (initial conditions)

- the one with Binary Collisions weight (BC) quantitatively describes SC for 0-10%, while Wounded Nucleon (WN) fails completely.
Conclusion

We have measured for the first time the new multi-particle observables $SC(m,n)$ which quantify the relationship between event-by-event fluctuations of two different flow harmonics.

- v_2 and v_4 are correlated, v_2 and v_3 are anti-correlated in all centralities, the centrality dependence can’t be described quantitively by existed calculations.
- $SC(m,n)$ measurements are more sensitive to input values of η/s than the individual flow harmonics, discriminate the inputs to hydro model with different parameterizations of η/s.
- In fluctuation-dominated regime the MC-Glauber initial conditions with binary collisions weights are favored over wounded nucleon weights by data.

SC(m,n), better sensitivity to initial conditions and η/s, provide new parameters to improve the theoretical calculations.
Backup
Y. Zhou, NPA 931 (2014) 949-953

ALICE Preliminary

Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV

<table>
<thead>
<tr>
<th>Centrality: 0-5%</th>
<th>Centrality: 20-30%</th>
<th>Centrality: 40-50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v_2[2,</td>
<td>\Delta\eta</td>
<td>>0.8]/v_2[2,</td>
</tr>
</tbody>
</table>

ALI-PREL-68224

JHEP 11 (2013) 183

ATLAS, PRC 90, 024905 (2014)
V_n, V_m correlations via ESE

- SC observables are not influenced by non-flow, as shown in slide 8, not the case for the study using 2-particle correlations.
- SC measurements provide a compact quantitative measure of these correlations, without needing knowledge of the functional relation between v_m and v_n.
- Finally, our SC observables can easily be obtained from hydrodynamical calculations.
Systematic uncertainty

<table>
<thead>
<tr>
<th>SC(3,2)</th>
<th>systematic uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-uniform acceptance</td>
<td>< 1%</td>
</tr>
<tr>
<td>reconstruction inefficiency</td>
<td>7%</td>
</tr>
<tr>
<td>vertex z range</td>
<td>< 1%</td>
</tr>
<tr>
<td>high multiplicity outliers</td>
<td>< 1%</td>
</tr>
<tr>
<td>track types</td>
<td>5%</td>
</tr>
<tr>
<td>minNClustersTPC</td>
<td>< 1%</td>
</tr>
<tr>
<td>pseudorapidity range</td>
<td>< 1%</td>
</tr>
<tr>
<td>charge combinations</td>
<td>5%</td>
</tr>
<tr>
<td>DCA xy</td>
<td>3%</td>
</tr>
<tr>
<td>DCA z</td>
<td>3%</td>
</tr>
<tr>
<td>minChi2PerClusterTPC</td>
<td>< 1%</td>
</tr>
<tr>
<td>maxChi2PerClusterTPC</td>
<td>< 1%</td>
</tr>
<tr>
<td>Total</td>
<td>10.8%</td>
</tr>
</tbody>
</table>