

Measurements of Correlations of Anisotropic Flow Harmonics in Pb–Pb Collisions with ALICE

You Zhou (周铀)

Niels Bohr Institute (on behalf of the ALICE Collaboration)

- The magnitudes of the Flow-vector, anisotropic flow harmonics v_n, have been measured in great details (centrality, p_T, η, PID)
 - constraints on the initial conditions, $\eta/s,$ EoS, freeze-out conditions et al.

fluctuations of each individual flow harmonics have been

- The fluctuations of each individual flow harmonic have been investigated.
 - further understanding of underlying p.d.f. of v_{n} distributions

You Zhou @ QM2015, Kobe

Correlations between $\overrightarrow{V_m}$ and $\overrightarrow{V_n}$

- Correlations between m-th and n-th Flow-vectors:
 - Flow angle correlations: Ψ_m and Ψ_n correlations (have been studied)
 - Flow magnitude correlations: v_m and v_n correlations
 - Does v_m and v_n correlated? anti-correlated? or not correlated?
 - How can we investigate the relationship of v_m and v_n without contribution from ψ_m and ψ_n ?

September 30th, 2015 You Zhou @ QM2015, Kobe

Correlations of v_{m} and v_{n}

A linear correlation coefficient $c(v_m, v_n)$ was proposed to study the correlations between v_m and $v_{n:}$ H. Niemi et al.,

$$c(v_m, v_n) = \left\langle \frac{(v_m - \langle v_m \rangle_{ev})(v_n - \langle v_n \rangle_{ev})}{\sigma_{v_n} \sigma_{v_m}} \right\rangle_{ev}$$

H. Niemi et al., PRC 87, 054901 (2013)

- negative correlations of $c(v_2, v_3)$ and positive correlations of $c(v_2, v_4)$
- $c(v_2, v_3)$ is sensitive to initial conditions and insensitive to η/s , $c(v_2, v_4)$ is sensitive to both $rac{l}{\sim} c(v_m, v_n)$ is a new observable to constrain initial conditions and η/s .
- However, this observable cannot be accessible easily in flow measurements which relying on two- and multi-particle correlations.

SC(m,n)

New observable:

A. Bilandzic etc, PRC 89, 064904 (2014)

Symmetric 2-harmonic 4-particle Cumulants, SC(m,n), measures the correlations of v_m and v_n

$$\begin{split} &\langle \cos(m\varphi_1 + n\varphi_2 - m\varphi_3 - n\varphi_4) \rangle \rangle_c \\ &= \langle \langle \cos(m\varphi_1 + n\varphi_2 - m\varphi_3 - n\varphi_4) \rangle \rangle - \langle \langle \cos[m(\varphi_1 - \varphi_2)] \rangle \rangle \langle \langle \cos[n(\varphi_1 - \varphi_2)] \rangle \rangle \\ &= \langle v_m^2 v_n^2 \rangle - \langle v_m^2 \rangle \langle v_n^2 \rangle \,. \end{split}$$

- By construction not sensitive to:
 - non-flow effects, due to usage of 4-particle cumulant
 - inter-correlations of various symmetry planes ($\psi_{m}\,\text{and}\,\,\psi_{n}\,\text{correlations})$
- \clubsuit It is non-zero if the event-by-event amplitude fluctuations of v_m and v_n are (anti-)correlated.
 - more details, see Section IV in:

http://journals.aps.org/prc/abstract/10.1103/PhysRevC.89.064904

SC(m,n) calculation in models

ALICE

In previous AMPT study, it predicted a positive SC(4,2) and negative SC(3,2), the signs of SC(m,n) in the final state seem to be determined by SC(m,n)_ε in the initial state.

You Zhou @ QM2015, Kobe

SC(m,n) calculation in models

- In previous AMPT study, it predicted a positive SC(4,2) and negative SC(3,2), the signs of SC(m,n) in the final state seem to be determined by SC(m,n)_ε in the initial state.
- Both the partonic and hadronic interactions contribute to the magnitudes of SC(m,n).

September 30th, 2015

You Zhou @ QM2015, Kobe

Discovery

5

SC(m,n) calculation in models

- In previous AMPT study, it predicted a positive SC(4,2) and negative SC(3,2), the signs of SC(m,n) in the final state seem to be determined by SC(m,n)_ε in the initial state.
- Both the partonic and hadronic interactions contribute to the magnitudes of SC(m,n).
- SC(m,n), a new observable to constrain initial conditions and the properties of the system.

You Zhou @ QM2015, Kobe

Analysis Details

Detectors used:

- Inner Tracking System (trigger, tracking and vertexing)
- Time Projection Chamber (tracking, centrality determination)
- V0 detectors
 - (trigger, centrality determination)

Data sample:

- Pb-Pb at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$
 - ~ 12 M events analyzed
- Tracks used:
 - -0.8 < η < 0.8
 - $0.2 < p_T < 5.0 \text{ GeV/}c$

September 30th, 2015

You Zhou @ QM2015, Kobe

Centrality dependence of SC(m,n)

The positive values of SC(4,2) and negative SC(3,2) are observed for all centralities.

- suggests a correlation between v_2 and v_4 , and an anti-correlations between v_2 and v_3 .
- indicates finding $v_2 > \langle v_2 \rangle$ in an event enhances the probability of finding $v_4 > \langle v_4 \rangle$ and finding $v_3 < \langle v_3 \rangle$ in that event.

You Zhou @ QM2015, Kobe

Non-flow contributions?

- SC(m,n) calculations from HIJING
- * It is found that $\langle v_m^2 v_n^2 \rangle > 0$ and $\langle v_m^2 \rangle \langle v_n^2 \rangle > 0$ in HIJING, but SC(m,n) are compatible with zero

-> suggests SC measurements are nearly insensitive to non-flow effects.

• non-zero values of SC measurements cannot be explained by non-flow effects, thus confirms the existence of (anti-)correlations between v_m and v_n harmonics.

You Zhou @ QM2015, Kobe

Contributions from the initial state ?

- Comparisons to MC-Glauber model calculations
 - SC(m,n)_ε from MC-Glauber model using weights of wounded nucleon (WN) and binary collisions (BC) weights are scaled and compared to data.
 - Increasing trend from central to peripheral collisions with different signature has been observed for $SC(4, 2)_{\epsilon}$ and $SC(3, 2)_{\epsilon}$, the centrality dependence of corresponding measurements cannot be captured well.
 - correlations in the initial conditions are not the only contribution to SC measurements.

You Zhou @ QM2015, Kobe

v_n harmonics and hydrodynamics

H. Niemi, arXiv: 1505.02677

ALICE

TABLE I. The constant-slope parametrizations of $\eta/s(T)$, constructed so that they reproduce the LHC v_n data.

	$T_{\rm min}/{ m MeV}$	$(\eta/s)_{\min}$	$\eta/s(100{ m MeV})$	$\eta/s(500{ m MeV})$
param1	150	0.12	0.24	0.65
param2	180	0.16	0.36	0.16
param4	180	0.12	0.76	0.30

IC: perturbative QCD + saturation model (also known as EKRT)

Discovery

0

- Various settings of η/s in hydro calculations have been investigated
 - standard flow measurements are not very sensitive to $\eta/s(T)$ at least for central- and mid-central collisions.

You Zhou @ QM2015, Kobe

Comparisons to hydrodynamics

H. Niemi, arXiv: 1505.02677

ALICE

ALICE Preliminar

70

Discovery

Comparison of SC measurements to hydrodynamic calculations *

- Although hydro describes the v_n fairly well, there is no a single centrality for which a given η /s parameterization describes simultaneously SC(4,2) and SC(3,2).
- SC measurements provide stronger constrains on the η /s in hydro than standard v_n measurements alone.

You Zhou @ QM2015, Kobe

Better sensitivity to η/s

Comparison of SC measurements to hydrodynamic calculations

- Although hydro describes the v_n fairly well, there is no a single centrality for which a given η /s parameterization describes simultaneously SC(4,2) and SC(3,2).
- \bullet SC measurements provide stronger constrains on the η/s in hydro than standard v_n measurements alone.

You Zhou @ QM2015, Kobe

Probe the initial conditions

Assuming $v_n \propto \varepsilon_n$ in the central collisions, the SC(m,n)_{ϵ} after scaling might be able to describe SC(m,n) measurements.

- Comparison to MC-Glauber calculations (initial conditions)
 - the one with Binary Collisions weight (BC) quantitatively describes SC for 0-10%, while Wounded Nucleon (WN) fails completely.

Conclusion

- We have measured for the first time the new multi-particle observables SC(m,n) which quantify the relationship between eventby-event fluctuations of two different flow harmonics.
 - v_2 and v_4 are correlated, v_2 and v_3 are anti-correlated in all centralities, the centrality dependence can't be described quantitively by existed calculations.
 - SC(m,n) measurements are more sensitive to input values of η /s than the individual flow harmonics, discriminate the inputs to hydro model with different parameterizations of η /s.
 - In fluctuation-dominated regime the MC-Glauber initial conditions with binary collisions weights are favored over wounded nucleon weights by data.

SC(m,n), better sensitivity to initial conditions and η /s, provide new parameters to improve the theoretical calculations.

September 30th, 2015

You Zhou @ QM2015, Kobe

Discove

13

Backup

You Zhou @ QM2015, Kobe

ATLAS, PRC 90, 024905 (2014)

Discovery

Y. Zhou, NPA 931 (2014) 949-953

September 30th, 2015

JHEP 11 (2013) 183

You Zhou @ QM2015, Kobe

v_n, v_m correlations via ESE

- SC observables are not influenced by non-flow, as shown in slide 8, not the case for the study using 2-particle correlations.
- SC measurements provide a compact quantitative measure of these correlations, without needing knowledge of the functional relation between v_m and v_n
- Finally, our SC observables can easily be obtained from hydrodynamical calculations.

ALICE

۱**۲**۳، ۳

Systematic uncertainty

SC(3,2)	systematic uncertainty	
non-uniform acceptance	< 1%	
reconstruction inefficiency	7 %	
vertex z range	< 1 %	
high multiplicity outliers	< 1 %	
track types	5 %	
minNClustersTPC	< 1 %	
pseudorapidity range	< 1 %	
charge combinations	5 %	
DCA xy	3 %	
DCA z	3 %	
minChi2PerClusterTPC	< 1 %	
maxChi2PerClusterTPC	< 1 %	
Total	10.8 %	

September 30th, 2015

You Zhou @ QM2015, Kobe