

Angular distributions of the quenched energy flow from dijets with different radius parameters in CMS

Quark Matter 2015 Kobe, Japan On behalf of the CMS experiment at the LHC

Observation of Dijet Asymmetry in RbPb

- Where does the momentum go? (Far from the cone)
- To study: characterize missing p_T incrementally in η-φ 0.15 0.1 0.1

0.1

Samples and Selection

- pp: 5.3 pb⁻¹ at 2.76 TeV
- Single Jet 80 GeV Trigger
 - Fully efficient at 120 GeV
- PbPb: 166 µb⁻¹ at 2.76 TeV
- Single Jet 80 GeV Trigger
 - Fully efficient at 120 GeV

Dijet selection: p_{T.1} > 120 GeV p_{T,2} > 50 GeV anti-kt calorimeter jets (See backup slide 21) • $|\eta_1|$, $|\eta_2| < 1.6$ (0.6) • $\Delta \phi_{1,2} > 5\pi/6$ Track Selection: p_T > 0.5 GeV Corrected for efficiency/fake rate (See backup slides 20,22) • |n| < 2.4

3

Analysis: The Dijet Axis

Christopher McGinn

4

Analysis: Binning Tracks by Δ

CMS

Analysis: Binning Tracks by Δ

Analysis: Binning Tracks by Δ

Missing $P_T vs. \Delta with R = 0.3 (All A_J)$

- p⊤ particles through large angles
- Characterized finely in Δ increments of 0.2

Missing PT and Jet Radius

 Jet shape differences in Gen. PYTHIA for different R Shifting third jet position in Gen. PYTHIA relative to subleading jet

Multiple R Missing $P_T vs. \Delta$

Zoom on pp and PbPb Distributions (I)

Zoom on pp and PbPb Distributions (II)

- Subleading side peak shifts outward in Δ from 0.2->0.5
 - Third jet possible position pushed out with R increase

pp and PbPb Cumulative Curves (I)

pp and PbPb Cumulative Curves (II)

- Curve difference between PbPb and pp primarily in first bin Δ
- For all R, curves very similar between PbPb and pp with $\Delta > 0.2$
 - Total missing p_T variation with R parameter in pp matched by PbPb
 - Constituent composition of missing p_T differs between systems

Difference of PbPb and pp (I)

Difference of PbPb and pp (II)

- High p_T change in first bin Δ from R=0.2->0.5 within systematic
- Low p_T excess increases in both magnitude and angle with R=0.2->0.5
 - Final "catch-all" bin increase suggests longer tail

Summary and the Future

- Missing p_T finely characterized through large angles Δ
 - Different dijet configurations were sampled by R variation
- Cumulative curves similar to first order for all jet R
 - Modification primarily of constituents carrying momentum
- Increased statistics of Run2 -> precise mapping for models

Impact of Tracking Cuts on Missing P_T

Jet Reconstruction with HF/Voronoi Algorithm

- UE at mid- η mapped by energy deposition at forward- η
- Equalization removes negative energy towers
 - Shifted from surrounding positive energy towers
- An energy correction based on fragmentation is applied to minimize bias from non-linear calorimeter response
 - Applied to pp and PbPb

Track Reconstruction and Correction

- Correct for efficiency/fake rate (+ secondary/multiple reco. in pp)
- Iterative tracking corrections in p_T , ϕ , η , centrality, and minimum jet distance

Summary of Systematics R = 0.2/0.4/0.5

	R = 0.2		R = 0.4		R = 0.5	
Δ	< 0.2	0.2–2.0	< 0.2	0.2–2.0	< 0.2	0.2–2.0
Jet reconstruction	1	0.1–0.4	1	0.1–0.5	1	0.1–0.7
Data/MC differences for JES	2	0.1–0.5	2	0.1 - 0.4	2	0.1–0.3
Fragmentation dependent JES	1	0.1-0.4	1	0.1–0.3	1	0.1–0.3
Track corrections	2	0.2–0.7	2	0.1–1.1	2	0.1–1.1
Data/MC differences for tracking	1	0.1–0.2	1	0.1	1	0.1
Total	3	0.2–0.9	3	0.3–1.1	3	0.2–1.1

3rd Jet Position in Gen. PYTHIA

Gen. PYTHIA Jet Shapes

Missing $P_T vs. \Delta with R = 0.3 (A_J < 0.22)$

Missing $P_T vs. \Delta with R = 0.3 (A_J > 0.22)$

- Low p_T particles enhanced by cut on $A_J > 0.22$
- Cumulative curves track despite scale change

Missing $P_T vs. A_J$ with R = 0.3

Hemisphere Multiplicity Difference

 Multiplicity excess towards subleading side shows centrality and A_J dependence

Multiple R Missing $P_T vs. \Delta (A_J > 0.22)$

Multiple R Missing $P_T vs. \Delta (A_J > 0.22)$

Multiple R Missing PTvs. AJ

dN/dp_T for all R

- Potential R dependence in low p_T contribution (0.5-1.0 GeV)
- R = 0.2-> R = 0.5 difference slightly greater than summed statistical and systematic error

