Holomorphic blocks and *q*-deformed correlators

Sara Pasquetti

University of Surrey

10-02-2015, CERN

In recent years many exact results for gauge theories on compact manifolds have been obtained by the method of SUSY localisation.

The idea is that by adding a Q-exact term to the action it is possible to reduce the path integral to a finite dimensional integral:

Localisation: $Z_{\mathcal{M}} = \int D\psi e^{-S[\Psi]} = \int D\Psi_0 e^{-S[\Psi_0]} Z_{1-\text{loop}}[\Psi_0]$

- ▶ Ψ_0 : field configurations satisfying localising (saddle point) equations
- \blacktriangleright with a clever localisation scheme, Ψ_0 is a finite dimensional set
- ► $Z_{1-\text{loop}}[\Psi_0]$ is due to the quadratic fluctuation around Ψ_0
- \Rightarrow useful to study holography
- \Rightarrow connect to exactly solvable models such as 2d CFTs and TQFTs

So far exact results have been obtained for $S^2, S^2 \times S^1, S^3/\mathbb{Z}_r, S^3/\mathbb{Z}_r \times S^1, S^4, S^4 \times S^1, S^5, Y_{p,q} \cdots$

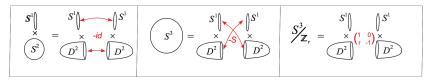
[Benini-Cremonesi], [Droud-Gomis-LeFloch-Lee], [Kapustin-Willett-Yaakov], [Imamura-Yokoyama], [Kapustin-Willet], [Gadde-Pomoni-Rastelli-Razamat], [Kim-Kim-Lee], [Terashima], [Iqbal-Vafa], [Kallen-Zabzine], [Kallen-Qiu-Zabzine], [Hosomichi-Seong-Terashima], [Imamura], [Lockhart-Vafa], [Kim-Kim-Kim]...

 $\label{eq:comprehensive formalism for SUSY theories formulated on curved manifolds initiated in [Festuccia-Seiberg]. Recent developments:$

4*d*, $\mathcal{N} = 1$ theories with $U(1)_R$ can be defined on complex manifolds with an Hermitian metric. Partition functions are "topological quantities": they are metric independent and compute complex structures and holomorphic vector bundles (defined by background gauge fields) invariants. Similar results for 3*d*, $\mathcal{N} = 2$ theories [Closset-Dumitrescu-Festuccia-Komargodski].

... localisation computations are long, geometric data hidden.Is there a set of building blocks to construct partition functions?Are there new integrable structures associated to these blocks?

3-manifolds from solid tori $D^2 \times S^1$ gluing



Is there a QFT analogue of this decomposition?

Yes, $\mathcal{N} = 2$ partition functions can be factorised into holomorphic-blocks [SP],[Beem-Dimofte-SP],[Nieri-SP, to appear]

$$Z_{\mathcal{M}_{g}} = \mathcal{P}\sum_{\alpha} \mathcal{B}_{\alpha}^{D^{2} \times S^{1}}(\vec{x}, q) \mathcal{B}_{\alpha}^{D^{2} \times S^{1}}(\tilde{\vec{x}}, \tilde{q}) = \mathcal{P}\sum_{\alpha} \left| \left| \mathcal{B}_{\alpha}^{D^{2} \times S^{1}}(\vec{x}, q) \right| \right|_{g}^{2}$$

 α labels SUSY vacua, \vec{x} , flavor parameters, $q=e^{2\pi i\tau}$ is the boundary torus complex structure and

$$au o ilde{ au} = rac{a au+b}{c au+d}, \qquad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \mathit{SL}(2,\mathbb{Z}).$$

Factorisation \leftrightarrow dynamical parity anomaly cancellation. \mathcal{P} is the contribution of background mixed Chern-Simons terms.

Example: the lens space

The Coulomb branch localisation of $\mathcal{N} = 2$ theories on the lens space S^3/\mathbb{Z}_r yields [Benini-Nishioka-Yamazaki],[Imamura-Matsuno-Yokoyama]

$$Z_{S^{3}/\mathbb{Z}_{r}} = \sum_{\vec{l}=0}^{r-1} \int d\vec{z} \ Z_{cl}(\vec{z},\vec{l};\vec{m},\vec{H},\omega_{1},\omega_{2},r) \cdot Z_{1\text{loop}}(\vec{z},\vec{l};\vec{m},\vec{H},\omega_{1},\omega_{2},r)$$

 \vec{l}, \vec{H} are dynamical and flavor holonomies, \vec{m} are mass parameters, $\omega_{1,2}$ are complex structure parameters (squashing).

A chiral multiplet in the fundamental representation contributes as

$$Z_{1\mathrm{loop}}^{chiral} = \prod_{a=1}^{N_f} \prod_{n=1}^{N} \hat{s}_{b,-\ell_n-H_a} \left(i rac{Q}{2} - z_n - \mu_a
ight) \; ,$$

The function $\hat{s}_{b,h}$ is the projection of the double Sine function:

$$\hat{s}_{b,-h}(z) = e^{\frac{i\pi}{2r}([h](r-[h])-(r-1)h^2)} \prod_{\substack{n_1,n_2 \ge 0\\n_2-n_1=h \mod r}} \frac{n_1\omega_1 + n_2\omega_2 + Q/2 - iz}{n_2\omega_1 + n_1\omega_2 + Q/2 + iz}$$

Performing the integration (residues computation) and summing over the holonomies we find [Nieri-SP, to appear],[Imamaura-Yokoyama]

$$Z_{S^3/\mathbb{Z}_r} = \mathcal{P}\sum_{\alpha} \left| \left| \mathcal{B}_{\alpha}^{D^2 \times S^1}(\vec{x}; q) \right| \right|_r^2,$$

with

$$q = e^{2\pi i \tau} = e^{2\pi i \frac{\omega_1 + \omega_2}{r\omega_1}}, \qquad \vec{x} = e^{\vec{X}} e^{-\frac{2\pi i \vec{H}}{r}} = e^{2\pi i \frac{\vec{m}}{r\omega_1}} e^{-\frac{2\pi i \vec{H}}{r}},$$

and

$$\tilde{\tau} = \frac{\tau}{r\tau - 1}, \quad \tilde{X} = \frac{X}{r\tau - 1}, \quad \tilde{H} = r - H.$$

This gluing rule is consistent with the realisation of L(r, 1) from a pair of solid tori $[0, 1] \times T^2$.

3d holomorphic blocks

can be defined as basis of solutions to difference equations.

Example: the SQED, U(1) theory with N_f flavours and FI parameter u, are solutions ($\alpha = 1, \dots, N_f$) of the q-hypergeometric difference equation

$$\mathcal{B}^{D^2 \times S^1}_{\alpha}(\vec{x}; q) = \frac{\theta(x_{\alpha} u; q)}{\theta(u; q) \theta(x_{\alpha}; q)} \prod_{j,k}^{N_f} \frac{(qx_j x_{\alpha}^{-1}; q)_{\infty}}{(y_k x_{\alpha}^{-1}; q)_{\infty}} \mathcal{Z}^{(\alpha)}_V,$$

$$Z_{V}^{(\alpha)} = \sum_{p=1}^{\infty} \prod_{j,k=1}^{N_{f}} \frac{(x_{\alpha}y_{k}^{-1};q)_{p}}{(qx_{\alpha}x_{j}^{-1};q)_{p}} u^{p} = N_{f} \Phi_{N_{f}-1}(x_{\alpha}y_{j}-1,qx_{\alpha}x_{j}^{-1};u).$$

difference equations are solved by block integrals: [Beem-Dimofte-SP]

$$\mathcal{B}^{D^2 imes S^1}_{lpha}(ec{x};q) = \int_{\mathcal{C}_{lpha}} rac{ds}{2\pi i s} \Upsilon(s,ec{x};q)$$

- C_{α} are all convergent (downward-flow) contours.
- ▶ at special values of (\vec{x}, q) , Stokes walls contours can jump.

Analytic properties

- Holomorphic blocks are defined by *q*-series (defined for $|q| \neq 1$).
- ▶ When |q| < 1 we have $|\tilde{q}| > 1$, the *q*-series and the \tilde{q} -series converge to different functions.

Example: the free chiral

$$\mathcal{B}_{chiral}^{D^2 \times S^1}(x;q) = \sum_{n=0}^{\infty} \frac{(-1)^n q^{\frac{n(n+1)}{2}} x^{-n}}{(q)_n} = \begin{cases} \prod_{n=0}^{\infty} \left(1 - q^{n+1} x^{-1}\right) & |q| < 1 \,, \\ \prod_{n=0}^{\infty} \left(1 - q^{-n} x^{-1}\right)^{-1} & |q| > 1 \,. \end{cases}$$

 $\mathcal{B}^{D^2 \times S^1}_{\alpha}(x; q)$ and $\mathcal{B}^{D^2 \times S^1}_{\alpha}(\tilde{x}; \tilde{q})$ transform as independent functions! At Stokes walls we have:

$$\mathcal{B}^{D^2 \times S^1}_{\alpha}(\vec{x}, q) \to \mathcal{M}^{\beta}_{\alpha} \mathcal{B}^{D^2 \times S^1}_{\beta}(\vec{x}, q) \,, \, \mathcal{B}^{D^2 \times S^1}_{\alpha}(\vec{\tilde{x}}, \tilde{q}) \to (\mathcal{M}^{-1T})^{\beta}_{\alpha} \mathcal{B}^{D^2 \times S^1}_{\beta}(\vec{\tilde{x}}, \tilde{q}) \,,$$

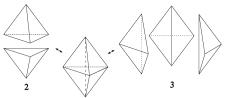
while partition functions stay invariant.

3d-3d correspondence

Arises by wrapping *M*5 branes on $M \times N$, where M=hyperbolic 3-manifold and $N = S_b^3, S^2 \times S^1, D^2 \times S^1$ and states that: [Dimofte-Gukov],[Dimofte-Gukov-GaiottoI,II]

 $\mathcal{T}(M)$, 3d $\mathcal{N}=$ 2 theory on $N\leftrightarrow$ complex Chern-Simons on M

- \blacktriangleright ideal tetrahedron \leftrightarrow free chiral + half Chern-Simons unit
- ▶ gluing tetrahedra ↔ gauging flavour symmetries
- \blacktriangleright internal edges \leftrightarrow superpotential couplings
- change of triangulation \leftrightarrow 3d mirror symmetry
- fundamental move



gauged U(1) with 2 chirals \leftrightarrow 3 chirals with superpotential (XYZ) \rightarrow geometric classification of a large class of abelian mirror symmetries

3d blocks and analytically continued Chern-Simons

Take the 3d $\mathcal{N}=2$ theory on the solid torus $\textit{N}=\textit{D}^2 \times \textit{S}^1$

- ▶ SUSY vacua α in $\mathcal{T}(M) \leftrightarrow$ flat $SL(2, \mathbb{C})$ connections A^{α} on M
- ▶ holomorphic blocks B^{D²×S¹}_α(x, q) ↔ analytically continued Chern-Simons partition functions Z^{CS}_α(x, q) introduced by Witten.

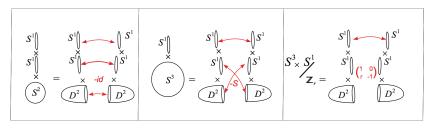
Example: If M is the 4_1 knot complement $\mathcal{T}(4_1)$ is the U(1) theory with 2 chirals (for particular value of the masses).

- \blacktriangleright two vacua, two blocks \leftrightarrow two CS irreducible flat connections.
- asymptotics for $q = e^{\hbar}$, $\hbar \to 0$:

$$Z_{\alpha=1,2}^{CS}(x,q) = \mathcal{B}_{\alpha=1,2}^{D^2 \times S^1}(x,q) \sim \exp\left(\frac{i}{\hbar} [\pm 2.0298]\right)$$

 \rightarrow our block integrals are the first concrete examples of non-perturbative path integrals in analytically continued CS along "exotic" integration cycles (labelled by irreducible flat $SL(2, \mathbb{C})$ connections).

4-manifolds from solid tori $D^2 \times T^2$ gluing



There is a corresponding factorisation of $\mathcal{N} = 1$ partition functions [Peelaers],[Yoshida],[Nieri-SP,to appear]. Example:

$$Z_{S^3 \times S^1/\mathbb{Z}_r} = \mathcal{A} \sum_{\alpha} \left\| \left| \mathcal{B}_{\alpha}^{D^2 \times T^2}(\vec{x}; q_{\tau}, q_{\sigma}) \right| \right|_r^2$$

 $q_{\tau} = e^{2\pi i \frac{\omega_1 + \omega_2}{r\omega_1}} = e^{2\pi i \tau}, \quad q_{\sigma} = e^{-2\pi i \frac{\omega_3}{r\omega_1}} = e^{-2\pi i \sigma}, \quad \vec{x} = e^{2\pi i \frac{\vec{m}}{r\omega_1}} e^{\frac{2\pi i \vec{H}}{r}} = e^{\vec{X}} e^{\frac{2\pi i \vec{H}}{r}}$ $\tilde{\tau} = \frac{\tau}{r\tau - 1}, \qquad \tilde{\sigma} = \frac{\sigma}{r\tau - 1}, \quad \tilde{X} = \frac{X}{r\tau - 1}, \quad \tilde{H} = r - H$

Factorisation \leftrightarrow dynamical anomaly cancellation. A, extracted by an SL(3, Z) transformation, is the contribution of background anomalies.

In 3d and 4d the factorisation can be understood in various ways:

- as the result of an alternative localisation scheme, Higgs branch localisation, where the localising loci are vortices [Benini-Peelaers], [Fujitsuka-Honda-Yoshida].
- as a consequence of the quasi-topological nature of partition functions left invariant by deformation to cigars connected by infinitively long tubes: effective projection

[Alday-Martelli-Richmond-Sparks].

in the more general tt* setup, developed for 3d and 4d theories [Cecotti-Gaiotto-Vafa].

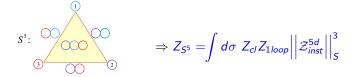
In 5d the factorisation is already present on the Coulomb branch.

Example: $\mathcal{N} = 1$ theories on S^5

i, j, k

Localisation on $\omega_1^2 |z_1|^2 + \omega_2^2 |z_2|^2 + \omega_3^2 |z_3|^2 = 1$ yields:

[Kallen-Zabzine], [Hosomichi-Seong-Terashima], [Kim-Kim-Kim], [Lockart-Vafa]



▶ $\mathbb{R}^4 \times S^1$ instantons $\mathcal{Z}_{inst}^{5d}(e^{2\pi\sigma/e_3}, e^{2\pi\vec{m}/e_3}; q, t)$ are localized at fixed points of the Hopf fibration and are glued as:

$$\begin{split} \left| \left| f(e^{2\pi z/e_3}; q, t) \right| \right|_{S}^{3} &:= \prod_{k=1}^{3} f(e^{2\pi z/e_3}; q, t)_k, \quad q = e^{2\pi i e_1/e_3}, t = e^{2\pi i e_2/e_3} \\ (e_1, e_2, e_3) &= (\omega_3, \omega_2, \omega_1), (\omega_1, \omega_3, \omega_2), (\omega_1, \omega_2, \omega_3) \quad \text{for} \quad k = 1, 2, 3. \end{split}$$

► 1-loop contributions are: expressed in terms of triple-sine functions: $S_3(x) = \prod (i\omega_1 + j\omega_2 + k\omega_3 + x)(i\omega_1 + j\omega_2 + k\omega_3 + E - x), \quad E = \omega_1 + \omega_2 + \omega_3.$ It is possible to factorise the classical (Yang-Mills and Chern-Simons terms) and 1loop parts

$$Z_{cl}Z_{1loop} = \left| \left| \mathcal{Z}_{cl}\mathcal{Z}_{1loop} \right| \right|_{S}^{3}$$

using that [Felder-Varchenko]:

$$e^{-\frac{2\pi i}{3!}B_{33}(x,\vec{\omega})} = \left| \left| \Gamma_{q,t}(x/e_3) \right| \right|_{S}^{3}, \qquad \Gamma_{q,t}(z) = \frac{(e^{-2\pi i z} q t; q, t)}{(e^{2\pi i z}; q, t)}$$

and

$$S_3(iz) = e^{-\frac{\pi i}{3!}B_{33}(iz)} \left| \left| \left(e^{-\frac{2\pi}{e_3}z}; q, t \right) \right| \right|_S^3$$

and obtain the block factorized form which respects periodicity (invariance under shift $z \rightarrow z + ik\omega_i$) in each sector:

$$\left(Z_{S^{5}} = \int d\sigma \left\| \mathcal{B}^{5d} \right\|_{S}^{3}, \qquad \mathcal{B}^{5d} := \mathcal{Z}_{\mathsf{cl}} \ \mathcal{Z}_{1\mathsf{-loop}} \ \mathcal{Z}_{\mathsf{inst}}^{5d}\right)$$

 \rightarrow these blocks are universal!

5-manifolds from solid tori $\mathbb{R}^4_{\epsilon_1,\epsilon_2} \times S^1$ gluing

It is possible to introduce a set of 5d holomorphic blocks, such that: [Nieri-SP-Passerini-Torrielli]

$$Z_{S^{4}\times S^{1}} = \int d\sigma \left| \left| \mathcal{B}^{5d} \right| \right|_{id}^{2}, \qquad Z_{S^{5}} = \int d\sigma \left| \left| \mathcal{B}^{5d} \right| \right|_{S}^{3}, \qquad \cdot$$

. .

Now id, S are elements in SL(3, Z) to glue the three boundary circles.

Generalisation to $\mathcal{N} = 1$ theories on toric Sasaki-Einstein manifolds, \mathcal{T}^3 fibrations over an *n*-gon, [Qiu-Tizzano-Winding-Zabzine]

$$Z_n = \int d\sigma \prod_{k=1}^n (\mathcal{B}^{5d})_k$$

So far: all the exact results for SUSY partition functions on compact manifolds in various dimensions, derived via localisation, can be re-obtained by gluing a small set of building blocks. Next: construct new results, add defect operators, explore more general backgrounds . . . There are two more very important examples:

▶ 4d $\mathcal{N}=2$ theories on S^4 : [Pestun]

$$Z_{S^4} = \int d\sigma \ Z_{cl} Z_{1loop} \left| \mathcal{Z}_{inst}^{4d} \right|^2 = \int d\sigma \ \left| \mathcal{B}^{4d} \right|^2$$

▶ $\mathcal{N} = (2, 2)$ theories on S^2 : [Droud-Gomis-Le Floch-Lee],[Benini-Cremonesi]

$$Z_{S^2} = \sum_{\alpha} \left| \mathcal{B}_{\alpha}^{2d} \right|^2$$

Remarkably \mathcal{B}^{4d} , \mathcal{B}^{2d} are the building blocks of another theory: they are (normalised) Toda CFT conformal blocks. This is the main statement of the AGT correspondence.

AGT correspondence

The Alday-Gaiotto-Tachikawa correspondence relates:

- ▶ 4d "class S" $\mathcal{N} = 2$ gauge theories $\mathcal{T}_{g,n}$, obtained wrapping M5 on $C_{g,n}$ [Gaiotto]. These theories enjoy S-duality corresponding to different pant-decompositions of $C_{g,n}$.
- Liouville theory on C_{g,n}. It is a non-rational 2d CFT, characterised by 3-point functions and spectrum. Consistency requires modular invariance of correlators.

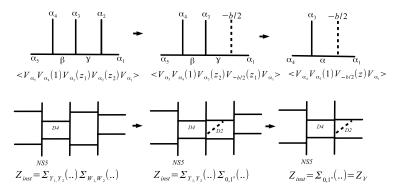
$$\langle \prod_{i}^{n} V_{\alpha_{i}} \rangle_{\mathcal{C}_{g,n}} = \int D\alpha \ \mathcal{C} \cdots \mathcal{C} \ |\mathcal{F}_{\alpha}^{\alpha_{i}}|^{2} = \int [Da] \ Z_{1loop} \left| \mathcal{Z}_{cl} \mathcal{Z}_{inst}^{4d} \right|^{2} = Z_{S^{4}} [\mathcal{T}_{g,n}]$$

2dCFT	4d gauge theory
Virasoro conf block : $\mathcal{F}_{\alpha}^{\alpha_i}$	$\mathcal{Z}_{ ext{inst}}^{4d}$
3point functions : $C(\alpha_1, \alpha_2, \alpha_3)$	$Z_{1 \text{loop}}$
cross ratio z	$e^{2\pi i \tau}$
external momenta α_i	masses m _i
internal momentum α	coulomb branch a

CFT modular invariance \Leftrightarrow generalised $\mathcal{N} = 2$ S-duality

Simple surface operators \Leftrightarrow degenerate primaries $(L_{-2} + \frac{1}{b^2}L_{-1}^2)V_{-b/2} = 0$

[Alday-Gaiotto-Gukov-Tachikawa-Verlinde]



▶ degenerate conformal blocks ↔ vortex counting [Dimofte-Gukov-Hollands],[Kozcaz-Pasquetti-Wyllard].

▶ degenerate correlators $\leftrightarrow S^2$ partition functions [Droud-Gomis-LeFloch-Lee],[Gomis-LeFloch]

 $\Big(\langle V_{lpha_4}V_{lpha_3}(1)V_{-b/2}(z_1)\cdots V_{-b/2}(z_k)V_{lpha_1}
angle=Z_{S_2}\Big)$

flop symmetry \Leftrightarrow crossing symmetry

Is there a 5d - 3d analogue?

Hint 1: $\mathcal{Z}_{inst}^{5d} \leftrightarrow q$ -deformed Virasoro chiral blocks. [Awata-Yamada],[many others]

Hint 2: $5d \rightarrow 3d$ degeneration of $\mathcal{N} = 1$ partition functions.

Conjecture: S^5 and $S^4 \times S^1$ partition functions are captured by q-deformed Liouville correlators. [Nieri-SP-Passerini]

But what is q-deformed Liouville?

q-deformed Virasoro algebra $\mathcal{V}ir_{q,t}$

 $\mathcal{V}ir_{q,t}$ has two complex parameters q, t and generators \mathcal{T}_n with $n \in \mathbb{Z}$. [Shiraishi-Kubo-Awata-Odake],[Lukyanov-Pugai],[Frenkel-Reshetikhin],[Jimbo-Miwa]

$$\begin{bmatrix} T_n, T_m \end{bmatrix} = -\sum_{l=1}^{+\infty} f_l \left(T_{n-l} T_{m+l} - T_{m-l} T_{n+l} \right) \\ - \frac{(1-q)(1-t^{-1})}{1-p} \left((q/t)^n - (q/t)^{-n} \right) \delta_{m+n,0}$$

where $f(z) = \sum_{l=0}^{+\infty} f_l z^l = \exp\left[\sum_{l=1}^{+\infty} \frac{1}{n} \frac{(1-q^n)(1-t^{-n})}{1+(q/t)^n} z^n\right]$

- ▶ For $t = q^{-b_0^2}$ and $q \rightarrow 1$, $Vir_{q,t}$ reduces to Virasoro.
- Emerge as symmetries of solvable 2d lattice models.
- Verma module construction (singular states), Dotsenko-Fateev like integral representation are known [Mironov-Morozov-Shakirov], [Aganagic-Haouzi-Kozcaz-Shakirov].
- \rightarrow "5d AGT": $\mathcal{Z}_{inst}^{5d} \leftrightarrow \mathcal{V}ir_{q,t}$ chiral blocks [Awata-Yamada,…]

For special values of mass parameters integrals defining partition functions *localize* to discrete sums and satisfy difference equations.

Poles in $Z_{1-\text{loop}}^{S^5}$ and $Z_{1-\text{loop}}^{S^4 \times S^1}$ move and pinch the integration contour; the (meromorphic) continuation of partition functions requires taking residues of poles crossing the integration path.

 \rightarrow A similar mechanisms reduces non-degenerate Liouville correlators to degenerate ones, which satisfy differential equations. $[{\rm Ponsot-Teschner}]$

Example: consider the SU(2), $N_f = 4$ theory on S^5 . The poles structure of $Z_{1-loop}^{S^5}$ is such that:

for
$$m_1 + m_2 = -i\omega_3$$
 the integral localizes $\int d\sigma \Rightarrow \sum_{\{\sigma_1, \sigma_2\}}$

When evaluated on $\sigma = \{\sigma_1, \sigma_2\}$, instantons degenerate to vortices:

$$\begin{split} \mathcal{Z}_{inst,1}^{5d} &= \sum_{Y_1, Y_2} (\cdots) \to \sum_{0, 1^n} (\cdots) = \mathcal{Z}_V^{(i)}, \qquad \mathcal{Z}_{inst,2}^{5d} = \sum_{W_1, W_2} (\cdots) \to \sum_{0, n} (\cdots) = \tilde{\mathcal{Z}}_V^{(i)}, \\ \mathcal{Z}_{inst,3}^{5d, III} &= \sum_{X_1, X_2} (\cdots) \to \sum_{0, 0} (\cdots) = 1 \end{split}$$

and:

$$Z_{S^{5}}^{SCQCD} = \int d\sigma \ Z_{cl} Z_{1\text{-loop}}^{S^{5}} \left\| \mathcal{Z}_{inst}^{5d} \right\|_{S}^{3} \Rightarrow \sum_{i}^{2} \left\| \mathcal{B}_{i}^{D^{2} \times S^{1}} \right\|_{S}^{2} = Z_{S^{3}}^{SQED}$$

An identical degeneration works for permutations of $\omega_1, \omega_2, \omega_3$, corresponding to the three big S^3 inside S^5 .

A similar mechanisms for $m_1 + m_2 = -ib_0$ leads to

$$Z^{SCQCD}_{S^4 \times S^1} \Rightarrow Z^{SQED}_{S^2 \times S^1}$$

\rightarrow to be reinterpreted as degenerations of *q*-correlators.

Liouville CFT correlators can be defined and computed in a purely axiomatic fashion, without using the Lagrangian.

- conformal blocks are determined by the Virasoro algebra
- 3-point functions can be obtained using degenerate reps of the Virasoro algebra + crossing symmetry=bootstrap approach [Belavin-Polyakov-Zamolodchikov],[Teschner]

We define and compute *q*-deformed Liouville correlators in a purely axiomatic fashion, without knowing the Lagrangian:

- chiral blocks are determined by the Vir_{qt} algebra
- we determine 3-point function using degenerate reps of the Vir_{qt} algebra + crossing symmetry+gluing prescription (inspired by gauge theory) = q-deformed bootstrap approach

q-deformed Bootstrap Approach

Consider a 4-point correlator with a degenerate insertion

$$\langle V_{\alpha_4}(\infty) V_{\alpha_3}(r) V_{\alpha_2}(z, \tilde{z}) V_{\alpha_1}(0) \rangle \sim G(z, \tilde{z})$$

Correlators with degenerate primaries (singular states in the Verma module) satisfy difference equations. For the lowest degenerate we find: [Awata-Kubo-Morita-Odake-Shiraishi],[Awata-Yamada], [Schiappa-Wyllard]

$$D(A, B; C; q; z)G(z, z) = 0,$$
 $D(\tilde{A}, \tilde{B}; \tilde{C}; \tilde{q}; \tilde{z})G(z, \tilde{z}) = 0,$

where D(A, B; C; q; z) is the q-hypergeometric operator.

 $ightarrow G(z, \tilde{z})$ is a bilinear combination of solutions

Around z = 0

$$I_{1}^{(s)} = {}_{2}\Phi_{1}(A, B; C; z), \qquad I_{2}^{(s)} = \frac{\theta(q^{2}C^{-1}z^{-1}; q)}{\theta(qC^{-1}; q)\theta(qz^{-1}; q)} {}_{2}\Phi_{1}(qAC^{-1}, qBC^{-1}; q^{2}C^{-1}; z)$$

For $q \rightarrow 1$ becomes the undeformed *s*-channel basis.

s-channel correlator:

$$egin{aligned} &\langle V_{lpha_4}(\infty) V_{lpha_3}(r) V_{lpha_2}(z) V_{lpha_1}(0)
angle &\sim \sum_{i,j=1}^2 ilde{l}_i^{(s)} \mathcal{K}_{ij}^{(s)} l_j^{(s)} \ &= \sum_{i=1}^2 \mathcal{K}_{ii}^{(s)} \Big| \Big| l_i^{(s)} \Big| \Big|_*^2 = \sum_i \; \left. \begin{array}{c} lpha_2 & lpha_3 \ &dots & dots &$$

 $K_{ii}^{(s)}$ is diagonal with elements related to 3-point functions:

$$K_{ii}^{(s)} = C(\alpha_4, \alpha_3, \beta_i^{(s)}) C(Q_0 - \beta_i^{(s)}, -b_0/2, \alpha_1), \quad \beta_i^{(s)} = \alpha_1 \pm \frac{b_0}{2}, \ i = 1, 2$$

 \rightarrow we will need to prescribe the gluing $\left|\left|(\cdots)\right|\right|_{*}^{2}$

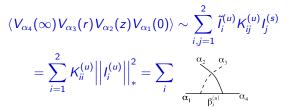
Around $z = \infty$

$$I_{1}^{(u)} = \frac{\theta(qA^{-1}z^{-1};q)}{\theta(A^{-1};q)\theta(qz^{-1};q)} \, {}_{2}\Phi_{1}(A,qAC^{-1};qAB^{-1};q^{2}z^{-1}),$$

$$I_{2}^{(u)} = \frac{\theta(qB^{-1}z^{-1};q)}{\theta(B^{-1};q)\theta(qz^{-1};q)} \, {}_{2}\Phi_{1}(B,qBC^{-1};qBA^{-1};q^{2}z^{-1})$$

For $q \rightarrow 1$ limit becomes the undeformed *u*-channel basis.

u-channel correlator:



 $K_{ii}^{(u)}$ is diagonal with elements related to 3-point functions

$${\cal K}^{(u)}_{ii} = {\it C}(lpha_1, lpha_3, eta^{(u)}_i) \, {\it C}({\it Q}_0 - eta^{(u)}_i, - {\it b}_0/2, lpha_4)\,, \quad eta^{(u)}_i = lpha_4 \pm rac{{\it b}_0}{2}\,, \ i=1,2$$

impose crossing symmetry

$$\begin{array}{c|c} \alpha_2 & \alpha_3 \\ \vdots \\ \alpha_1 & \beta_i^{(s)} \end{array} \alpha_4 = \begin{array}{c} \alpha_2 & \alpha_3 \\ \vdots \\ \alpha_1 & \beta_i^{(u)} \end{array} \alpha_4 \end{array}$$

$$\left[\mathcal{K}_{11}^{(s)} \left\| I_{1}^{(s)} \right\|_{*}^{2} + \mathcal{K}_{22}^{(s)} \left\| I_{2}^{(s)} \right\|_{*}^{2} = \mathcal{K}_{11}^{(u)} \left\| I_{1}^{(u)} \right\|_{*}^{2} + \mathcal{K}_{22}^{(u)} \left\| I_{2}^{(u)} \right\|_{*}^{2} \right]$$

analytic continuation $I_i^{(s)} = \sum_{j=1}^2 M_{ij} I_j^{(u)}$, $\tilde{I}_i^{(s)} = \sum_{j=1}^2 \tilde{M}_{ij} \tilde{I}_j^{(u)}$ yields:

$$\sum_{k,l=1}^{2} K_{kl}^{(s)} \tilde{M}_{ki} M_{lj} = K_{ij}^{(u)}$$

Now we need an ansatz for the gluing rule:

▶
$$S^5$$
 gluing rule → 3-point function $C_5(\alpha_1, \alpha_2, \alpha_3)$

▶ $S^4 imes S^1$ gluing rule \rightarrow 3-point function $C_{id}(lpha_1, lpha_2, lpha_3)$

3-point functions

• $S^4 \times S^1$ gluing rule \rightarrow *id*-correlators:

$$C_{id}(\alpha_3, \alpha_2, \alpha_1) = \frac{1}{\Upsilon^{\beta}(2\alpha_{\mathcal{T}} - Q_0)} \prod_{i=1}^3 \frac{\Upsilon^{\beta}(2\alpha_i)}{\Upsilon^{\beta}(2\alpha_{\mathcal{T}} - 2\alpha_i)}$$

where $2\alpha_T = \alpha_1 + \alpha_2 + \alpha_3$, $Q_0 = b_0 + 1/b_0$, b_0 is the S^4 squashing parameter and β is the S^1 radius.

▶ S^5 gluing rule → S-correlators:

$$C_5(\alpha_3, \alpha_2, \alpha_1) = \frac{1}{S_3(2\alpha_T - E)} \prod_{i=1}^3 \frac{S_3(2\alpha_i)}{S_3(2\alpha_T - 2\alpha_i)}$$

where $E = \omega_1 + \omega_2 + \omega_3$ and $\omega_1, \omega_2, \omega_3$ are the S^5 squashing parameters.

$$\Upsilon^{\beta}(X) \propto \prod_{n_{1},n_{2}=0}^{\infty} \sinh\left[\frac{\beta}{2}\left(X+n_{1}b_{0}+\frac{n_{2}}{b_{0}}\right)\right] \sinh\left[\frac{\beta}{2}\left(-X+(n_{1}+1)b_{0}+\frac{(n_{2}+1)}{b_{0}}\right)\right]$$

$$S_{3}(X) \propto \prod_{n_{1},n_{2},n_{3}=0} (\omega_{1}n_{1}+\omega_{2}n_{2}+\omega_{3}n_{3}+X)(\omega_{1}n_{1}+\omega_{2}n_{2}+\omega_{3}n_{3}+E-X)$$

With a suitable dictionary (akin to the AGT dictionary) we can map q-correlators to 5d partition functions.

Examples:

▶ 5d SQCD, SU(2), $N_f = 4$ theory \Leftrightarrow 4-point correlator

$$Z^{SQCD}_{S^4 imes S^1} = \langle V_{lpha_1} V_{lpha_2} V_{lpha_3} V_{lpha_4}
angle_{\it id}$$

$$Z_{S^5}^{SQCD} = \langle V_{\alpha_1} V_{\alpha_2} V_{\alpha_3} V_{\alpha_4} \rangle_S$$

▶ 5d $\mathcal{N} = 1^*$ *SU*(2) theory \Leftrightarrow 1-point torus correlator

$$Z_{S^4 imes S^1}^{\mathcal{N}=1^*} = \langle V_{lpha_1}
angle_{\mathit{id}}$$

$$Z_{S^5}^{\mathcal{N}=1^*} = \langle V_{\alpha_1} \rangle_S$$

Brief summary and open questions

The factorisation of 5d partition functions in terms of 5d holomorphic blocks \mathcal{B}^{5d} and their identification with chiral $\mathcal{V}ir_{qt}$ blocks, suggest to map 5d partition functions to *q*-deformed Liouville correlators.

We defined *q*-deformed Liouville correlators in terms of $\mathcal{V}ir_{qt}$ blocks and 3-point functions and showed that indeed they can be mapped to 5d partition functions.

-We need to investigate the full duality group of *q*-deformed correlators (what is the *q*-deformation of the Moore-Seiberg groupoid?) So far we know that degenerate *q*-correlators are crossing symmetry invariant (we imposed this in the bootstrap).

-What is the 5d gauge theory interpretation of *q*-correlators dualities?

-Can we define Verlinde-loop operators in the *q*-deformed case? What is their gauge theory dual?

Our approach so far has been purely axiomatic/algebraic. To construct q-correlators we only used representations of $\mathcal{V}ir_{qt}$ and imposed associativity of the operator algebra (crossing symmetry).

It'd be interesting to have a more geometric/semiclassical description of the these theories.

In Liouville theory an interesting object which bridges between the axiomatic and the semiclassical approach is the reflection coefficient.

Reflection coefficient

exact reflection coefficient from DOZZ 3-point function:

$$R^{L} = \frac{C(Q_0 - \alpha_1, \alpha_2, \alpha_3)}{C(\alpha_1, \alpha_2, \alpha_3)} \sim \frac{\Gamma(2iPb_0)\Gamma(2iP/b_0)}{\Gamma(-2iPb_0)\Gamma(-2iP/b_0)}, \quad P = i(\alpha - Q_0/2)$$

▶ semiclassical $(b_0 \rightarrow 0)$ reflection coefficient from mini-superspace

$$\left(-\partial_{\phi_0}^2+e^{2b_0\phi_0}\right)\Psi=E\Psi$$

with solution

$$\psi\sim e^{2iP\phi_0}+R(P)e^{-2iP\phi_0}$$
 ,

yielding

$$R(P)\sim rac{\Gamma(2iP/b_0)}{\Gamma(-2iP/b_0)}$$

 \rightarrow captures only *half* of the exact result.

1d Schrödinger problems can be mapped to free motion in curved spaces.

The radial part of Laplace-Beltrami operator on the Lobachevsky space $\simeq SL(2,\mathbb{C})/SU(2)$ reduces to the Liouville wall problem with asymptotics

 $\psi_{\lambda}(x) \sim c(\lambda) e^{i\lambda x} + c(-\lambda) e^{-i\lambda x}$ as $x \to -\infty$

The coefficients $c(\pm \lambda)$ are the Harish-Chandra *c*-functions:

$$c(\lambda) = rac{1}{\Gamma(1+2i\lambda)}, \qquad R = rac{c(-\lambda)}{c(\lambda)} = -rac{\Gamma(2i\lambda)}{\Gamma(-2i\lambda)}$$

with the identification of the spectral parameter $\lambda = P/b_0$ reproduces the semiclassical Liouville result.

c-functions of any classical symmetric space, can be expressed as

$$c(\lambda) = \prod_{\alpha \in \Delta^+} \frac{1}{\Gamma(I + \lambda \cdot \alpha)},$$

where l = 1, 1/2 for finite dimensional or affine Lie algebras.

Affinisation

 $[{\rm Gerasimov\ et\ al.}]$ observed that the exact Liouville reflection coefficient can be obtained considering the affine version of the group

 $\mathfrak{sl}(2)
ightarrow \hat{\mathfrak{sl}}(2)$.

Adding the affine root α_0 to the positive root α_1 and choosing

 $\lambda \cdot (\alpha_0 + \alpha_1) = \tau, \quad \lambda \cdot \alpha_1 = 2iP/b_0 - 1/2, \quad \lambda \cdot \alpha_0 = \tau - 2iP/b_0 + 1/2,$

the *c*-function becomes

 $c(P)^{-1} \equiv \Gamma(2iP/b_0) \prod_{n\geq 1} \Gamma(2iP/b_0 + n\tau) \Gamma(1 - 2iP/b_0 + n\tau) \Gamma(1/2 + n\tau),$

yielding

$$rac{c(-P)}{c(P)} \sim -rac{\Gamma(2iP/b_0)}{\Gamma(-2iP/b_0)} rac{\Gamma(2iP/b_0 au)}{\Gamma(-2iP/b_0 au)} \,,$$

with $\tau = 1/b_0^2$ matches the exact Liouville result R_L . Message: affinisation \leftrightarrow effective 2nd quantisation.

id-reflection coefficient

From 3-point functions we find the exact reflection coefficient:

$$R_{id} = \frac{C_{id}(Q_0 - \alpha, \alpha_2, \alpha_1)}{C_{id}(\alpha, \alpha_2, \alpha_1)} \sim \frac{\Gamma_q (2iPb_0) \Gamma_t (2iP/b_0)}{\Gamma_q (-2iPb_0) \Gamma_t (-2iP/b_0)},$$

with $q = e^{\beta/b_0}$, $t = e^{\beta b_0}$ and $\Gamma_q(x) \equiv \frac{(q;q)_\infty}{(q^x;q)_\infty}(1-q)^{1-x}$.

Analogy with semiclassical Liouville suggests to take

$$c(\lambda) = \Gamma_t (I + \lambda \cdot \alpha)^{-1},$$

this is the *c*-function of the quantum Lobachevsky space where $\mathfrak{sl}(2) \rightarrow U_q(\mathfrak{sl}(2))$ [Olshanetsky-Rogov].

Taking the affine version and defining $q = t^{\tau}$, $\tau = 1/b_0^2$, we recover the exact reflection coefficient:

$$c(P) \sim \frac{(t^{2iP/b_0}; q, t)(t^{1-2iP/b_0}; q, t)}{(t^{1-2iP/b_0}; t)}, \quad \frac{c(-P)}{c(P)} \sim \frac{\Gamma_q(2iPb_0)\Gamma_t(2iP/b_0)}{\Gamma_q(-2iPb_0)\Gamma_t(-2iP/b_0)}.$$

S-reflection coefficient

From 3-point functions we find the exact reflection coefficient:

$$R_{S} = \frac{C_{S}(E - \alpha, \alpha_{2}, \alpha_{1})}{C_{S}(\alpha, \alpha_{2}, \alpha_{1})} = \frac{S_{3}(-2iP|\vec{\omega})}{S_{3}(2iP|\vec{\omega})}, \quad P = i\alpha - iE/2.$$

We take a c-function given in terms of the double-Gamma function:

$$c(P) = \Gamma_2(2iP/\kappa|e_1, e_2)^{-1}, \quad e_1 + e_2 = 1.$$

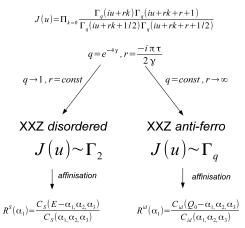
This *c*-function have been argued to arise in generalised symmetric spaces and to be part of a hierarchy of integrable systems, whose S-matrix building blocks are Γ_n functions [Freund-Zabrodin].

Finally the affinisation prescription yields the exact reflection coefficient:

$$c(P)^{-1} = \prod_{n \ge 0} \Gamma_2(2iP/\kappa + n\tau | e_1, e_2) \Gamma_2(1 - 2iP/\kappa + (n+1)\tau | e_1, e_2)$$
$$\prod_{n \ge 1} \Gamma_2(1/2 + n\tau | e_1, e_2) = S_3(2iP | \vec{\omega})^{-1},$$
with $\omega = \kappa(e_1, e_2, \tau).$

Relation to S-matrices

XYZ



 \rightarrow The appearance of the XXZ spin-chain is not surprising: SUSY vacua of 3d $\mathcal{N}=2$ theories can be mapped to eigenstates of spin-chain Hamiltonians [Nekrasov-Shatashivili], 3d blocks satisfy the Baxter equation for the XXZ spin chain [Gadde-Gukov-Putrov].

THANK YOU!