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In recent years many exact results for gauge theories on compact
manifolds have been obtained by the method of SUSY localisation.

The idea is that by adding a Q-exact term to the action it is possible to
reduce the path integral to a finite dimensional integral:

Localisation: ZM =
∫
Dψe−S[Ψ] =

∫
DΨ0e

−S[Ψ0]Z1-loop[Ψ0]

I Ψ0: field configurations satisfying localising (saddle point) equations

I with a clever localisation scheme, Ψ0 is a finite dimensional set

I Z1-loop[Ψ0] is due to the quadratic fluctuation around Ψ0

⇒ useful to study holography

⇒ connect to exactly solvable models such as 2d CFTs and TQFTs



So far exact results have been obtained for
S2,S2 × S1,S3/Zr ,S

3/Zr × S1,S4,S4 × S1,S5,Yp,q · · ·
[Benini-Cremonesi],[Droud-Gomis-LeFloch-Lee], [Kapustin-Willett-Yaakov],
[Imamura-Yokoyama],[Kapustin-Willet],[Gadde-Pomoni-Rastelli-Razamat],[Kim-Kim-

Lee],[Terashima],[Iqbal-Vafa],[Kallen-Zabzine],[Kallen-Qiu-Zabzine],[Hosomichi-Seong-

Terashima],[Imamura],[Lockhart-Vafa],[Kim-Kim-Kim]. . .

Comprehensive formalism for SUSY theories formulated on curved
manifolds initiated in [Festuccia-Seiberg]. Recent developments:

4d , N = 1 theories with U(1)R can be defined on complex manifolds
with an Hermitian metric. Partition functions are ”topological
quantities”: they are metric independent and compute complex
structures and holomorphic vector bundles (defined by background gauge
fields) invariants. Similar results for 3d , N = 2 theories
[Closset-Dumitrescu-Festuccia-Komargodski].

. . . localisation computations are long, geometric data hidden.

Is there a set of building blocks to construct partition functions?

Are there new integrable structures associated to these blocks?



3-manifolds from solid tori D2 × S1 gluing

Is there a QFT analogue of this decomposition?

Yes, N = 2 partition functions can be factorised into holomorphic-blocks
[SP],[Beem-Dimofte-SP],[Nieri-SP, to appear]

ZMg = P
∑
α

BD
2×S1

α (~x , q) BD
2×S1

α (~̃x , q̃) = P
∑
α

∣∣∣∣∣∣BD2×S1

α (~x , q)
∣∣∣∣∣∣2
g

α labels SUSY vacua, ~x , flavor parameters, q = e2πiτ is the boundary
torus complex structure and

τ → τ̃ =
aτ + b

cτ + d
,

(
a b
c d

)
∈
(

1 0
0 −1

)
· SL(2,Z) .

Factorisation↔dynamical parity anomaly cancellation. P is the
contribution of background mixed Chern-Simons terms.



Example: the lens space
The Coulomb branch localisation of N = 2 theories on the lens space
S3/Zr yields [Benini-Nishioka-Yamazaki],[Imamura-Matsuno-Yokoyama]

ZS3/Zr
=

r−1∑
~l=0

∫
d~z Zcl(~z ,~l ; ~m, ~H, ω1, ω2, r) · Z1loop(~z ,~l ; ~m, ~H, ω1, ω2, r)

~l , ~H are dynamical and flavor holonomies, ~m are mass parameters, ω1,2

are complex structure parameters (squashing).

A chiral multiplet in the fundamental representation contributes as

Z chiral
1loop =

Nf∏
a=1

N∏
n=1

ŝb,−`n−Ha

(
i
Q

2
− zn − µa

)
,

The function ŝb,h is the projection of the double Sine function:

ŝb,−h(z) = e
iπ
2r ([h](r−[h])−(r−1)h2)

∏
n1,n2≥0

n2−n1=h mod r

n1ω1 + n2ω2 + Q/2− iz

n2ω1 + n1ω2 + Q/2 + iz
.



Performing the integration (residues computation) and summing over the
holonomies we find [Nieri-SP, to appear],[Imamaura-Yokoyama]

ZS3/Zr
= P

∑
α

∣∣∣∣∣∣BD2×S1

α (~x ; q)
∣∣∣∣∣∣2
r
,

with

q = e2πiτ = e2πi
ω1+ω2
rω1 , ~x = e

~X e−
2πi~H

r = e2πi ~m
rω1 e−

2πi~H
r ,

and

τ̃ =
τ

rτ − 1
, X̃ =

X

rτ − 1
, H̃ = r − H .

This gluing rule is consistent with the realisation of L(r , 1) from a pair of
solid tori [0, 1]× T 2.



3d holomorphic blocks
I can be defined as basis of solutions to difference equations.

Example: the SQED, U(1) theory with Nf flavours and FI parameter
u, are solutions (α = 1, · · ·Nf ) of the q-hypergeometric difference
equation

BD
2×S1

α (~x ; q) =
θ(xαu; q)

θ(u; q)θ(xα; q)

Nf∏
j,k

(qxjx
−1
α ; q)∞

(ykx
−1
α ; q)∞

Z(α)
V ,

Z
(α)
V =

∞∑
p=1

Nf∏
j,k=1

(xαy
−1
k ; q)p

(qxαx
−1
j ; q)p

up = Nf
ΦNf−1(xαyj−1, qxαx

−1
j ; u) .

I difference equations are solved by block integrals: [Beem-Dimofte-SP]

BD
2×S1

α (~x ; q) =

∫
Cα

ds

2πis
Υ(s, ~x ; q)

I Cα are all convergent (downward-flow) contours.
I at special values of (~x , q), Stokes walls contours can jump.
I the block integrand Υ(s, ~x ; q) has been recently rederived via

localisation on D2 × S1
[Yoshida-Sugiyama]



Analytic properties

I Holomorphic blocks are defined by q-series (defined for |q| 6= 1).

I When |q| < 1 we have |q̃| > 1, the q-series and the q̃-series
converge to different functions.

Example: the free chiral

BD
2×S1

chiral (x ; q) =
∞∑
n=0

(−1)nq
n(n+1)

2 x−n

(q)n
=


∏∞

n=0

(
1− qn+1x−1

)
|q| < 1 ,∏∞

n=0

(
1− q−nx−1

)−1 |q| > 1 .

BD2×S1

α (x ; q) and BD2×S1

α (x̃ ; q̃) transform as independent functions!

At Stokes walls we have:

BD
2×S1

α (~x , q)→ Mβ
αBD

2×S1

β (~x , q) , BD
2×S1

α (~̃x , q̃)→ (M−1T )βαBD
2×S1

β (~̃x , q̃) ,

while partition functions stay invariant.



3d-3d correspondence

Arises by wrapping M5 branes on M × N, where M=hyperbolic
3-manifold and N = S3

b ,S
2 × S1, D2 × S1 and states that:

[Dimofte-Gukov],[Dimofte-Gukov-GaiottoI,II]

T (M), 3d N = 2 theory on N ↔ complex Chern-Simons on M

I ideal tetrahedron ↔ free chiral + half Chern-Simons unit

I gluing tetrahedra ↔ gauging flavour symmetries

I internal edges ↔ superpotential couplings

I change of triangulation ↔ 3d mirror symmetry

I fundamental move

gauged U(1) with 2 chirals ↔ 3 chirals with superpotential (XYZ)

→ geometric classification of a large class of abelian mirror symmetries



3d blocks and analytically continued Chern-Simons

Take the 3d N = 2 theory on the solid torus N = D2 × S1

I SUSY vacua α in T (M) ↔ flat SL(2,C) connections Aα on M

I holomorphic blocks BD2×S1

α (x , q) ↔ analytically continued
Chern-Simons partition functions ZCS

α (x , q) introduced by Witten.

Example: If M is the 41 knot complement T (41) is the U(1) theory with
2 chirals (for particular value of the masses).

I two vacua, two blocks ↔ two CS irreducible flat connections.

I asymptotics for q = e~, ~→ 0:

ZCS
α=1,2(x , q) = BD

2×S1

α=1,2 (x , q) ∼ exp

(
i

~
[±2.0298]

)
→ our block integrals are the first concrete examples of non-perturbative
path integrals in analytically continued CS along ”exotic” integration
cycles (labelled by irreducible flat SL(2,C) connections).



4-manifolds from solid tori D2 × T 2 gluing

There is a corresponding factorisation of N = 1 partition functions
[Peelaers],[Yoshida],[Nieri-SP,to appear]. Example:

ZS3×S1/Zr
= A

∑
α

∣∣∣∣∣∣BD2×T 2

α (~x ; qτ , qσ)
∣∣∣∣∣∣2
r

qτ = e2πi
ω1+ω2
rω1 = e2πiτ , qσ = e

−2πi
ω3
rω1 = e−2πiσ , ~x = e

2πi ~m
rω1 e

2πi~H
r = e

~X e
2πi~H

r

τ̃ =
τ

rτ − 1
, σ̃ =

σ

rτ − 1
, X̃ =

X

rτ − 1
, H̃ = r − H

Factorisation↔dynamical anomaly cancellation. A, extracted by an
SL(3,Z ) transformation, is the contribution of background anomalies.



In 3d and 4d the factorisation can be understood in various ways:

I as the result of an alternative localisation scheme, Higgs branch
localisation, where the localising loci are vortices [Benini-Peelaers],
[Fujitsuka-Honda-Yoshida].

I as a consequence of the quasi-topological nature of partition
functions left invariant by deformation to cigars connected by
infinitively long tubes: effective projection
[Alday-Martelli-Richmond-Sparks].

I in the more general tt∗ setup, developed for 3d and 4d theories
[Cecotti-Gaiotto-Vafa].

In 5d the factorisation is already present on the Coulomb branch.



Example: N = 1 theories on S5

Localisation on ω2
1 |z1|2 + ω2

2 |z2|2 + ω2
3 |z3|2 = 1 yields:

[Kallen-Zabzine],[Hosomichi-Seong-Terashima],[Kim-Kim-Kim],[Lockart-Vafa]

⇒ ZS5 =

∫
dσ ZclZ1loop

∣∣∣∣∣∣Z5d
inst

∣∣∣∣∣∣3
S

I R4 × S1 instantons Z5d
inst(e

2πσ/e3 , e2π~m/e3 ; q, t) are localized at fixed
points of the Hopf fibration and are glued as:

∣∣∣∣∣∣f (e2πz/e3 ; q, t)
∣∣∣∣∣∣3
S

:=
3∏

k=1

f (e2πz/e3 ; q, t)k , q = e2πie1/e3 , t = e2πie2/e3

(e1, e2, e3) = (ω3, ω2, ω1) , (ω1, ω3, ω2) , (ω1, ω2, ω3) for k = 1, 2, 3 .

I 1-loop contributions are: expressed in terms of triple-sine functions:

S3(x) =
∏
i,j,k

(iω1 +jω2 +kω3 +x)(iω1 +jω2 +kω3 +E−x) , E = ω1 +ω2 +ω3 .



It is possible to factorise the classical (Yang-Mills and Chern-Simons
terms) and 1loop parts

ZclZ1loop =
∣∣∣∣∣∣ZclZ1loop

∣∣∣∣∣∣3
S

using that [Felder-Varchenko]:

e−
2πi
3! B33(x,~ω) =

∣∣∣∣∣∣Γq,t(x/e3)
∣∣∣∣∣∣3
S
, Γq,t(z) =

(e−2πiz q t ; q, t)

(e2πiz ; q, t)

and

S3(iz) = e−
πi
3! B33(iz)

∣∣∣∣∣∣(e− 2π
e3

z ; q, t)
∣∣∣∣∣∣3
S

and obtain the block factorized form which respects periodicity
(invariance under shift z → z + ikωi ) in each sector:�



�
	ZS5 =

∫
dσ
∣∣∣∣∣∣B5d

∣∣∣∣∣∣3
S
, B5d := Zcl Z1-loop Z5d

inst

→ these blocks are universal!



5-manifolds from solid tori R4
ε1,ε2
× S1 gluing

It is possible to introduce a set of 5d holomorphic blocks, such that:
[Nieri-SP-Passerini-Torrielli]

ZS4×S1 =

∫
dσ
∣∣∣∣∣∣B5d

∣∣∣∣∣∣2
id
, ZS5 =

∫
dσ
∣∣∣∣∣∣B5d

∣∣∣∣∣∣3
S
, · · ·

Now id ,S are elements in SL(3,Z ) to glue the three boundary circles.

Generalisation to N = 1 theories on toric Sasaki-Einstein manifolds, T 3

fibrations over an n-gon, [Qiu-Tizzano-Winding-Zabzine]

Zn =

∫
dσ

n∏
k=1

(B5d)k .

So far: all the exact results for SUSY partition functions on compact
manifolds in various dimensions, derived via localisation, can be
re-obtained by gluing a small set of building blocks.
Next: construct new results, add defect operators, explore more general
backgrounds . . .



There are two more very important examples:

I 4d N=2 theories on S4: [Pestun]

ZS4 =

∫
dσ ZclZ1loop

∣∣∣Z4d
inst

∣∣∣2 =

∫
dσ
∣∣∣B4d

∣∣∣2
I N = (2, 2) theories on S2: [Droud-Gomis-Le Floch-Lee],[Benini-Cremonesi]

ZS2 =
∑
α

∣∣∣B2d
α

∣∣∣2

Remarkably B4d , B2d are the building blocks of another theory: they are
(normalised) Toda CFT conformal blocks. This is the main statement of
the AGT correspondence.



AGT correspondence

The Alday-Gaiotto-Tachikawa correspondence relates:

I 4d “class S” N = 2 gauge theories Tg ,n, obtained wrapping M5 on
Cg ,n [Gaiotto]. These theories enjoy S-duality corresponding to
different pant-decompositions of Cg ,n.

I Liouville theory on Cg ,n. It is a non-rational 2d CFT, characterised
by 3-point functions and spectrum. Consistency requires modular
invariance of correlators.

〈
n∏
i

Vαi 〉Cg,n =

∫
Dα C · · ·C |Fαi

α |2 =

∫
[Da] Z1loop

∣∣∣ZclZ4d
inst

∣∣∣2 = ZS4 [Tg ,n]

2dCFT 4d gauge theory

Virasoro conf block : Fαi
α Z4d

inst
3point functions : C(α1, α2, α3) Z1loop

cross ratio z e2πiτ

external momenta αi masses mi

internal momentum α coulomb branch a

CFT modular invariance ⇔ generalised N = 2 S-duality



Simple surface operators⇔degenerate primaries
(
L−2 + 1

b2 L
2
−1

)
V−b/2 = 0

[Alday-Gaiotto-Gukov-Tachikawa-Verlinde]

I degenerate conformal blocks ↔ vortex counting
[Dimofte-Gukov-Hollands],[Kozcaz-Pasquetti-Wyllard].

I degenerate correlators ↔ S2 partition functions
[Droud-Gomis-LeFloch-Lee],[Gomis-LeFloch]�� ��〈Vα4Vα3 (1)V−b/2(z1) · · ·V−b/2(zk)Vα1〉 = ZS2

flop symmetry ⇔ crossing symmetry



Is there a 5d − 3d analogue?

Hint 1: Z5d
inst ↔ q-deformed Virasoro chiral blocks. [Awata-Yamada],[many

others]

Hint 2: 5d → 3d degeneration of N = 1 partition functions.

Conjecture: S5 and S4 × S1 partition functions are captured by
q-deformed Liouville correlators. [Nieri-SP-Passerini]

But what is q-deformed Liouville?



q-deformed Virasoro algebra V irq,t
V irq,t has two complex parameters q, t and generators Tn with n ∈ Z.
[Shiraishi-Kubo-Awata-Odake],[Lukyanov-Pugai],[Frenkel-Reshetikhin],[Jimbo-Miwa]

[Tn , Tm] = −
+∞∑
l=1

fl (Tn−lTm+l − Tm−lTn+l)

− (1− q)(1− t−1)

1− p
((q/t)n − (q/t)−n)δm+n,0

where f (z) =
∑+∞

l=0 flz
l = exp

[∑+∞
l=1

1
n

(1−qn)(1−t−n)
1+(q/t)n zn

]
I For t = q−b

2
0 and q → 1, V irq,t reduces to Virasoro.

I Emerge as symmetries of solvable 2d lattice models.

I Verma module construction (singular states), Dotsenko-Fateev like
integral representation are known [Mironov-Morozov-Shakirov],
[Aganagic-Haouzi-Kozcaz-Shakirov].

→ ”5d AGT”: Z5d
inst ↔ V irq,t chiral blocks [Awata-Yamada,· · · ]



Degeneration of 5d partition function

For special values of mass parameters integrals defining partition
functions localize to discrete sums and satisfy difference equations.

Poles in ZS5

1-loop and ZS4×S1

1-loop move and pinch the integration contour;
the (meromorphic) continuation of partition functions requires taking
residues of poles crossing the integration path.

→ A similar mechanisms reduces non-degenerate Liouville correlators to
degenerate ones, which satisfy differential equations. [Ponsot-Teschner]



Example: consider the SU(2), Nf = 4 theory on S5. The poles structure

of ZS5

1-loop is such that:

for m1 + m2 = −iω3 the integral localizes

∫
dσ ⇒

∑
{σ1,σ2}

When evaluated on σ = {σ1, σ2}, instantons degenerate to vortices:

Z5d
inst,1 =

∑
Y1,Y2

(· · · )→
∑
0,1n

(· · · ) = Z(i)
V , Z5d

inst,2 =
∑

W1,W2

(· · · )→
∑
0,n

(· · · ) = Z̃(i)
V ,

Z5d,III
inst,3 =

∑
X1,X2

(· · · )→
∑
0,0

(· · · ) = 1

and:

ZSCQCD
S5 =

∫
dσ ZclZ

S5

1-loop

∣∣∣∣∣∣Z5d
inst

∣∣∣∣∣∣3
S
⇒

2∑
i

∣∣∣∣∣∣BD2×S1

i

∣∣∣∣∣∣2
S

= ZSQED
S3

An identical degeneration works for permutations of ω1, ω2, ω3,
corresponding to the three big S3 inside S5.

A similar mechanisms for m1 + m2 = −ib0 leads to

ZSCQCD
S4×S1 ⇒ ZSQED

S2×S1

→ to be reinterpreted as degenerations of q-correlators.



Liouville CFT correlators can be defined and computed in a purely
axiomatic fashion, without using the Lagrangian.

I conformal blocks are determined by the Virasoro algebra

I 3-point functions can be obtained using degenerate reps of the
Virasoro algebra + crossing symmetry=bootstrap approach
[Belavin-Polyakov-Zamolodchikov],[Teschner]

We define and compute q-deformed Liouville correlators in a purely
axiomatic fashion, without knowing the Lagrangian:

I chiral blocks are determined by the V irqt algebra

I we determine 3-point function using degenerate reps of the V irqt
algebra + crossing symmetry+gluing prescription (inspired by gauge
theory)= q-deformed bootstrap approach



q-deformed Bootstrap Approach

Consider a 4-point correlator with a degenerate insertion

〈Vα4 (∞)Vα3 (r)Vα2 (z , z̃)Vα1 (0)〉 ∼ G (z , z̃)

Correlators with degenerate primaries (singular states in the Verma
module) satisfy difference equations. For the lowest degenerate we find:
[Awata-Kubo-Morita-Odake-Shiraishi],[Awata-Yamada], [Schiappa-Wyllard]

D(A,B;C ; q; z)G (z , z) = 0 , D(Ã, B̃; C̃ ; q̃; z̃)G (z , z̃) = 0 ,

where D(A,B;C ; q; z) is the q-hypergeometric operator.

→G (z , z̃) is a bilinear combination of solutions



Around z = 0

I
(s)
1 = 2Φ1(A,B;C ; z) , I

(s)
2 =

θ(q2C−1z−1; q)

θ(qC−1; q)θ(qz−1; q)
2Φ1(qAC−1, qBC−1; q2C−1; z)

For q → 1 becomes the undeformed s-channel basis.

s-channel correlator:

〈Vα4 (∞)Vα3 (r)Vα2 (z)Vα1 (0)〉 ∼
2∑

i,j=1

Ĩ
(s)
i K

(s)
ij I

(s)
j

=
2∑

i=1

K
(s)
ii

∣∣∣∣∣∣I (s)
i

∣∣∣∣∣∣2
∗

=
∑
i

K
(s)
ij is diagonal with elements related to 3-point functions:

K
(s)
ii = C (α4, α3, β

(s)
i )C (Q0−β(s)

i ,−b0/2, α1) , β
(s)
i = α1±

b0

2
, i = 1, 2

→ we will need to prescribe the gluing
∣∣∣∣∣∣(· · · )∣∣∣∣∣∣2

∗



Around z =∞
I

(u)
1 =

θ(qA−1z−1; q)

θ(A−1; q)θ(qz−1; q)
2Φ1(A, qAC−1; qAB−1; q2z−1) ,

I
(u)
2 =

θ(qB−1z−1; q)

θ(B−1; q)θ(qz−1; q)
2Φ1(B, qBC−1; qBA−1; q2z−1)

For q → 1 limit becomes the undeformed u-channel basis.

u-channel correlator:

〈Vα4 (∞)Vα3 (r)Vα2 (z)Vα1 (0)〉 ∼
2∑

i,j=1

Ĩ
(u)
i K

(u)
ij I

(s)
j

=
2∑

i=1

K
(u)
ii

∣∣∣∣∣∣I (u)
i

∣∣∣∣∣∣2
∗

=
∑
i

K
(u)
ij is diagonal with elements related to 3-point functions

K
(u)
ii = C (α1, α3, β

(u)
i )C (Q0−β(u)

i ,−b0/2, α4) , β
(u)
i = α4±

b0

2
, i = 1, 2



impose crossing symmetry

�



�
	K

(s)
11

∣∣∣∣∣∣I (s)
1

∣∣∣∣∣∣2
∗

+ K
(s)
22

∣∣∣∣∣∣I (s)
2

∣∣∣∣∣∣2
∗

= K
(u)
11

∣∣∣∣∣∣I (u)
1

∣∣∣∣∣∣2
∗

+ K
(u)
22

∣∣∣∣∣∣I (u)
2

∣∣∣∣∣∣2
∗

analytic continuation I
(s)
i =

∑2
j=1 Mij I

(u)
j , Ĩ

(s)
i =

∑2
j=1 M̃ij Ĩ

(u)
j yields:

�
�

�
�∑2

k,l=1 K
(s)
kl M̃kiMlj = K

(u)
ij

Now we need an ansatz for the gluing rule:

I S5 gluing rule → 3-point function CS(α1, α2, α3)

I S4 × S1 gluing rule → 3-point function Cid(α1, α2, α3)



3-point functions
I S4 × S1 gluing rule → id-correlators:

Cid(α3, α2, α1) =
1

Υβ(2αT − Q0)

3∏
i=1

Υβ(2αi )

Υβ(2αT − 2αi )

where 2αT = α1 + α2 + α3, Q0 = b0 + 1/b0, b0 is the S4 squashing
parameter and β is the S1 radius.

I S5 gluing rule → S-correlators:

CS(α3, α2, α1) =
1

S3(2αT − E )

3∏
i=1

S3(2αi )

S3(2αT − 2αi )

where E = ω1 + ω2 + ω3 and ω1, ω2, ω3 are the S5 squashing
parameters.

Υβ(X ) ∝
∞∏

n1,n2=0

sinh

[
β

2

(
X + n1b0 +

n2

b0

)]
sinh

[
β

2

(
−X + (n1 + 1)b0 +

(n2 + 1)

b0

)]

S3(X ) ∝
∏

n1,n2,n3=0

(ω1n1 + ω2n2 + ω3n3 + X ) (ω1n1 + ω2n2 + ω3n3 + E − X )



With a suitable dictionary (akin to the AGT dictionary) we can
map q-correlators to 5d partition functions.

Examples:

I 5d SQCD, SU(2), Nf = 4 theory ⇔ 4-point correlator

ZSQCD
S4×S1 = 〈Vα1Vα2Vα3Vα4〉id

ZSQCD
S5 = 〈Vα1Vα2Vα3Vα4〉S

I 5d N = 1∗ SU(2) theory ⇔ 1-point torus correlator

ZN=1∗

S4×S1 = 〈Vα1〉id

ZN=1∗

S5 = 〈Vα1〉S



Brief summary and open questions

The factorisation of 5d partition functions in terms of 5d holomorphic
blocks B5d and their identification with chiral V irqt blocks, suggest to
map 5d partition functions to q-deformed Liouville correlators.

We defined q-deformed Liouville correlators in terms of V irqt blocks and
3-point functions and showed that indeed they can be mapped to 5d
partition functions.

–We need to investigate the full duality group of q-deformed correlators
(what is the q-deformation of the Moore-Seiberg groupoid?)

So far we know that degenerate q-correlators are crossing symmetry
invariant (we imposed this in the bootstrap).

–What is the 5d gauge theory interpretation of q-correlators dualities?

–Can we define Verlinde-loop operators in the q-deformed case? What is
their gauge theory dual?



Our approach so far has been purely axiomatic/algebraic. To construct
q-correlators we only used representations of V irqt and imposed
associativity of the operator algebra (crossing symmetry).

It’d be interesting to have a more geometric/semiclassical description of
the these theories.

In Liouville theory an interesting object which bridges between the
axiomatic and the semiclassical approach is the reflection coefficient.



Reflection coefficient

I exact reflection coefficient from DOZZ 3-point function:

RL =
C (Q0 − α1, α2, α3)

C (α1, α2, α3)
∼ Γ(2iPb0)Γ(2iP/b0)

Γ(−2iPb0)Γ(−2iP/b0)
, P = i(α−Q0/2)

I semiclassical (b0 → 0) reflection coefficient from mini-superspace(
−∂2

φ0
+ e2b0φ0

)
Ψ = EΨ

with solution
ψ ∼ e2iPφ0 + R(P)e−2iPφ0 ,

yielding

R(P) ∼ Γ(2iP/b0)

Γ(−2iP/b0)

→ captures only half of the exact result.



1d Schrödinger problems can be mapped to free motion in curved spaces.

The radial part of Laplace-Beltrami operator on the Lobachevsky space
' SL(2,C)/SU(2) reduces to the Liouville wall problem with asymptotics

ψλ(x) ∼ c(λ)e iλx + c(−λ)e−iλx as x → −∞

The coefficients c(±λ) are the Harish-Chandra c-functions:

c(λ) =
1

Γ(1 + 2iλ)
, R =

c(−λ)

c(λ)
= − Γ(2iλ)

Γ(−2iλ)

with the identification of the spectral parameter λ = P/b0 reproduces
the semiclassical Liouville result.

c-functions of any classical symmetric space, can be expressed as

c(λ) =
∏
α∈∆+

1

Γ(l + λ · α)
,

where l = 1, 1/2 for finite dimensional or affine Lie algebras.



Affinisation

[Gerasimov et al.] observed that the exact Liouville reflection coefficient can
be obtained considering the affine version of the group

sl(2)→ ŝl(2) .

Adding the affine root α0 to the positive root α1 and choosing

λ · (α0 + α1) = τ, λ · α1 = 2iP/b0 − 1/2, λ · α0 = τ − 2iP/b0 + 1/2 ,

the c-function becomes

c(P)−1 ≡ Γ(2iP/b0)
∏
n≥1

Γ(2iP/b0 + nτ)Γ(1− 2iP/b0 + nτ)Γ(1/2 + nτ) ,

yielding
c(−P)

c(P)
∼ − Γ(2iP/b0)

Γ(−2iP/b0)

Γ(2iP/b0τ)

Γ(−2iP/b0τ)
,

with τ = 1/b2
0 matches the exact Liouville result RL.

Message: affinisation↔ effective 2nd quantisation.



id-reflection coefficient

From 3-point functions we find the exact reflection coefficient:

Rid =
Cid(Q0 − α, α2, α1)

Cid(α, α2, α1)
∼ Γq (2iPb0) Γt (2iP/b0)

Γq (−2iPb0) Γt (−2iP/b0)
,

with q = eβ/b0 , t = eβb0 and Γq(x) ≡ (q;q)∞
(qx ;q)∞

(1− q)1−x .

Analogy with semiclassical Liouville suggests to take

c(λ) = Γt(l + λ · α)−1 ,

this is the c-function of the quantum Lobachevsky space where
sl(2)→ Uq(sl(2)) [Olshanetsky-Rogov].

Taking the affine version and defining q = tτ , τ = 1/b2
0, we recover the

exact reflection coefficient:

c(P) ∼ (t2iP/b0 ; q, t)(t1−2iP/b0 ; q, t)

(t1−2iP/b0 ; t)
,

c(−P)

c(P)
∼ Γq (2iPb0) Γt (2iP/b0)

Γq (−2iPb0) Γt (−2iP/b0)
.



S-reflection coefficient
From 3-point functions we find the exact reflection coefficient:

RS =
CS(E − α, α2, α1)

CS(α, α2, α1)
=

S3(−2iP|~ω)

S3(2iP|~ω)
, P = iα− iE/2 .

We take a c-function given in terms of the double-Gamma function:

c(P) = Γ2(2iP/κ|e1, e2)−1 , e1 + e2 = 1 .

This c-function have been argued to arise in generalised symmetric
spaces and to be part of a hierarchy of integrable systems, whose
S-matrix building blocks are Γn functions [Freund-Zabrodin].

Finally the affinisation prescription yields the exact reflection coefficient:

c(P)−1 =
∏
n≥0

Γ2(2iP/κ+ nτ |e1, e2)Γ2(1− 2iP/κ+ (n + 1)τ |e1, e2)

∏
n≥1

Γ2(1/2 + nτ |e1, e2) = S3(2iP|~ω)−1 ,

with ω = κ(e1, e2, τ).



Relation to S-matrices

→ The appearance of the XXZ spin-chain is not surprising: SUSY vacua
of 3d N = 2 theories can be mapped to eigenstates of spin-chain
Hamiltonians [Nekrasov-Shatashivili], 3d blocks satisfy the Baxter equation
for the XXZ spin chain [Gadde-Gukov-Putrov].



THANK YOU!


