Holomorphic blocks and q-deformed correlators

Sara Pasquetti
University of Surrey
10-02-2015, CERN

In recent years many exact results for gauge theories on compact manifolds have been obtained by the method of SUSY localisation.

The idea is that by adding a Q-exact term to the action it is possible to reduce the path integral to a finite dimensional integral:

Localisation: $\quad Z_{\mathcal{M}}=\int D \psi e^{-S[\psi]}=\int D \Psi_{0} e^{-S\left[\psi_{0}\right]} Z_{\text {1-loop }}\left[\Psi_{0}\right]$

- Ψ_{0} : field configurations satisfying localising (saddle point) equations
- with a clever localisation scheme, Ψ_{0} is a finite dimensional set
- $Z_{1 \text {-loop }}\left[\Psi_{0}\right]$ is due to the quadratic fluctuation around Ψ_{0}
\Rightarrow useful to study holography
\Rightarrow connect to exactly solvable models such as 2d CFTs and TQFTs

So far exact results have been obtained for $S^{2}, S^{2} \times S^{1}, S^{3} / \mathbb{Z}_{r}, S^{3} / \mathbb{Z}_{r} \times S^{1}, S^{4}, S^{4} \times S^{1}, S^{5}, Y_{p, q} \cdots$
[Benini-Cremonesi],[Droud-Gomis-LeFloch-Lee], [Kapustin-Willett-Yaakov], [Imamura-Yokoyama],[Kapustin-Willet],[Gadde-Pomoni-Rastelli-Razamat], [Kim-KimLee], [Terashima], [Iqbal-Vafa],[Kallen-Zabzine],[Kallen-Qiu-Zabzine],[Hosomichi-Seong-Terashima],[Imamura],[Lockhart-Vafa],[Kim-Kim-Kim]. . .

Comprehensive formalism for SUSY theories formulated on curved manifolds initiated in [Festuccia-Seiberg]. Recent developments:
$4 d, \mathcal{N}=1$ theories with $U(1)_{R}$ can be defined on complex manifolds with an Hermitian metric. Partition functions are "topological quantities": they are metric independent and compute complex structures and holomorphic vector bundles (defined by background gauge fields) invariants. Similar results for $3 d, \mathcal{N}=2$ theories
[Closset-Dumitrescu-Festuccia-Komargodski].
... localisation computations are long, geometric data hidden.
Is there a set of building blocks to construct partition functions?
Are there new integrable structures associated to these blocks?

3-manifolds from solid tori $D^{2} \times S^{1}$ gluing

Is there a QFT analogue of this decomposition?
Yes, $\mathcal{N}=2$ partition functions can be factorised into holomorphic-blocks [SP],[Beem-Dimofte-SP],[Nieri-SP, to appear]

$$
Z_{\mathcal{M}_{g}}=\mathcal{P} \sum_{\alpha} \mathcal{B}_{\alpha}^{D^{2} \times S^{1}}(\vec{x}, q) \mathcal{B}_{\alpha}^{D^{2} \times S^{1}}(\tilde{\vec{x}}, \tilde{q})=\mathcal{P} \sum_{\alpha}\left\|\mathcal{B}_{\alpha}^{D^{2} \times S^{1}}(\vec{x}, q)\right\|_{g}^{2}
$$

α labels SUSY vacua, \vec{x}, flavor parameters, $q=e^{2 \pi i \tau}$ is the boundary torus complex structure and

$$
\tau \rightarrow \tilde{\tau}=\frac{a \tau+b}{c \tau+d}, \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \cdot S L(2, \mathbb{Z}) .
$$

Factorisation \leftrightarrow dynamical parity anomaly cancellation. \mathcal{P} is the contribution of background mixed Chern-Simons terms.

Example: the lens space

The Coulomb branch localisation of $\mathcal{N}=2$ theories on the lens space S^{3} / \mathbb{Z}_{r} yields [Benini-Nishioka-Yamazaki],[Imamura-Matsuno-Yokoyama]

$$
Z_{S^{3} / \mathbb{Z}_{r}}=\sum_{\vec{l}=0}^{r-1} \int d \vec{z} Z_{c l}\left(\vec{z}, \vec{l} ; \vec{m}, \vec{H}, \omega_{1}, \omega_{2}, r\right) \cdot Z_{1 \text { loop }}\left(\vec{z}, \vec{l} ; \vec{m}, \vec{H}, \omega_{1}, \omega_{2}, r\right)
$$

\vec{I}, \vec{H} are dynamical and flavor holonomies, \vec{m} are mass parameters, $\omega_{1,2}$ are complex structure parameters (squashing).
A chiral multiplet in the fundamental representation contributes as

$$
Z_{\text {1loop }}^{\text {chiral }}=\prod_{a=1}^{N_{f}} \prod_{n=1}^{N} \hat{s}_{b,-\ell_{n}-H_{a}}\left(i \frac{Q}{2}-z_{n}-\mu_{a}\right)
$$

The function $\hat{s}_{b, h}$ is the projection of the double Sine function:

$$
\hat{s}_{b,-h}(z)=e^{\frac{i \pi}{2 r}\left([h](r-[h])-(r-1) h^{2}\right)} \prod_{\substack{n_{1}, n_{2} \geq 0 \\ n_{2}-n_{1}=h}} \frac{n_{1} \omega_{1}+n_{2} \omega_{2}+Q / 2-i z}{n_{2} \omega_{1}+n_{1} \omega_{2}+Q / 2+i z}
$$

Performing the integration (residues computation) and summing over the holonomies we find [Nieri-SP, to appear],[Imamaura-Yokoyama]

$$
Z_{S^{3} / \mathbb{Z}_{r}}=\mathcal{P} \sum_{\alpha} \| \mathcal{B}_{\alpha}^{D^{2} \times S^{1}(\vec{x} ; q) \|_{r}^{2}, ~}
$$

with

$$
q=e^{2 \pi i \tau}=e^{2 \pi i \frac{\omega_{1}+\omega_{2}}{r \omega_{1}}}, \quad \vec{x}=e^{\vec{x}} e^{-\frac{2 \pi i \vec{H}}{\Gamma}}=e^{2 \pi i \frac{\vec{\omega}}{r \omega_{1}}} e^{-\frac{2 \pi i \overrightarrow{ }}{\Gamma}},
$$

and

$$
\tilde{\tau}=\frac{\tau}{r \tau-1}, \quad \tilde{X}=\frac{X}{r \tau-1}, \quad \tilde{H}=r-H .
$$

This gluing rule is consistent with the realisation of $L(r, 1)$ from a pair of solid tori $[0,1] \times T^{2}$.

3d holomorphic blocks

- can be defined as basis of solutions to difference equations. Example: the SQED, $U(1)$ theory with N_{f} flavours and FI parameter u, are solutions $\left(\alpha=1, \cdots N_{f}\right)$ of the q-hypergeometric difference equation

$$
\begin{gathered}
\mathcal{B}_{\alpha}^{D^{2} \times S^{1}}(\vec{x} ; q)=\frac{\theta\left(x_{\alpha} u ; q\right)}{\theta(u ; q) \theta\left(x_{\alpha} ; q\right)} \prod_{j, k}^{N_{f}} \frac{\left(q x_{j} x_{\alpha}^{-1} ; q\right)_{\infty}}{\left(y_{k} x_{\alpha}^{-1} ; q\right)_{\infty}} \mathcal{Z}_{V}^{(\alpha)} \\
Z_{V}^{(\alpha)}=\sum_{p=1}^{\infty} \prod_{j, k=1}^{N_{f}} \frac{\left(x_{\alpha} y_{k}^{-1} ; q\right)_{p}}{\left(q x_{\alpha} x_{j}^{-1} ; q\right)_{p}} u^{p}=N_{f} \Phi_{N_{f}-1}\left(x_{\alpha} y_{j}-1, q x_{\alpha} x_{j}^{-1} ; u\right)
\end{gathered}
$$

- difference equations are solved by block integrals: [Beem-Dimofte-SP]

$$
\mathcal{B}_{\alpha}^{D^{2} \times S^{1}}(\vec{x} ; q)=\int_{\mathcal{C}_{\alpha}} \frac{d s}{2 \pi i s} \Upsilon(s, \vec{x} ; q)
$$

- \mathcal{C}_{α} are all convergent (downward-flow) contours.
- at special values of (\vec{x}, q), Stokes walls contours can jump.
- the block integrand $\Upsilon(s, \vec{x} ; q)$ has been recently rederived via localisation on $D^{2} \times S^{1}$ [Yoshida-Sugiyama]

Analytic properties

- Holomorphic blocks are defined by q-series (defined for $|q| \neq 1$).
- When $|q|<1$ we have $|\tilde{q}|>1$, the q-series and the \tilde{q}-series converge to different functions.
Example: the free chiral

$$
\mathcal{B}_{\text {chiral }}^{D^{2} \times S^{1}}(x ; q)=\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{\frac{n(n+1)}{2}} x^{-n}}{(q)_{n}}= \begin{cases}\prod_{n=0}^{\infty}\left(1-q^{n+1} x^{-1}\right) & |q|<1 \\ \prod_{n=0}^{\infty}\left(1-q^{-n} x^{-1}\right)^{-1} & |q|>1\end{cases}
$$

$\mathcal{B}_{\alpha}^{D^{2} \times S^{1}}(x ; q)$ and $\mathcal{B}_{\alpha}^{D^{2} \times S^{1}}(\tilde{x} ; \tilde{q})$ transform as independent functions!
At Stokes walls we have:
$\mathcal{B}_{\alpha}^{D^{2} \times S^{1}}(\vec{x}, q) \rightarrow M_{\alpha}^{\beta} \mathcal{B}_{\beta}^{D^{2} \times S^{1}}(\vec{x}, q), \mathcal{B}_{\alpha}^{D^{2} \times S^{1}}(\overrightarrow{\tilde{x}}, \tilde{q}) \rightarrow\left(M^{-1 T}\right)_{\alpha}^{\beta} \mathcal{B}_{\beta}^{D^{2} \times S^{1}}(\overrightarrow{\tilde{x}}, \tilde{q})$,
while partition functions stay invariant.

3d-3d correspondence

Arises by wrapping $M 5$ branes on $M \times N$, where $M=$ hyperbolic 3-manifold and $N=S_{b}^{3}, S^{2} \times S^{1}, D^{2} \times S^{1}$ and states that:
[Dimofte-Gukov],[Dimofte-Gukov-GaiottoI,II]
$\mathcal{T}(M)$, 3d $\mathcal{N}=2$ theory on $N \leftrightarrow$ complex Chern-Simons on M

- ideal tetrahedron \leftrightarrow free chiral + half Chern-Simons unit
- gluing tetrahedra \leftrightarrow gauging flavour symmetries
- internal edges \leftrightarrow superpotential couplings
- change of triangulation $\leftrightarrow 3$ 3d mirror symmetry
- fundamental move

gauged $U(1)$ with 2 chirals $\leftrightarrow 3$ chirals with superpotential (XYZ) \rightarrow geometric classification of a large class of abelian mirror symmetries

3d blocks and analytically continued Chern-Simons

Take the 3d $\mathcal{N}=2$ theory on the solid torus $N=D^{2} \times S^{1}$

- SUSY vacua α in $\mathcal{T}(M) \leftrightarrow$ flat $S L(2, \mathbb{C})$ connections A^{α} on M
- holomorphic blocks $\mathcal{B}_{\alpha}^{D^{2} \times S^{1}}(x, q) \leftrightarrow$ analytically continued Chern-Simons partition functions $Z_{\alpha}^{C S}(x, q)$ introduced by Witten.

Example: If M is the 4_{1} knot complement $\mathcal{T}\left(4_{1}\right)$ is the $U(1)$ theory with 2 chirals (for particular value of the masses).

- two vacua, two blocks \leftrightarrow two CS irreducible flat connections.
- asymptotics for $q=e^{\hbar}, \hbar \rightarrow 0$:

$$
Z_{\alpha=1,2}^{C S}(x, q)=\mathcal{B}_{\alpha=1,2}^{D^{2} \times S^{1}}(x, q) \sim \exp \left(\frac{i}{\hbar}[\pm 2.0298]\right)
$$

\rightarrow our block integrals are the first concrete examples of non-perturbative path integrals in analytically continued CS along "exotic" integration cycles (labelled by irreducible flat $S L(2, \mathbb{C})$ connections).

4-manifolds from solid tori $D^{2} \times T^{2}$ gluing

There is a corresponding factorisation of $\mathcal{N}=1$ partition functions [Peelaers], [Yoshida],[Nieri-SP,to appear]. Example:

$$
Z_{S^{3} \times S^{1} / \mathbb{Z}_{r}}=\mathcal{A} \sum_{\alpha}\left\|\mathcal{B}_{\alpha}^{D^{2} \times T^{2}}\left(\vec{x} ; q_{\tau}, q_{\sigma}\right)\right\|_{r}^{2}
$$

$$
\begin{array}{cc}
q_{\tau}=e^{2 \pi i \frac{\omega_{1}+\omega_{2}}{r \omega_{1}}}=e^{2 \pi i \tau}, \quad q_{\sigma}=e^{-2 \pi i \frac{\omega_{3}}{r \omega_{1}}}=e^{-2 \pi i \sigma}, \quad \vec{x}=e^{2 \pi i \frac{\vec{m}}{r \omega_{1}}} e^{\frac{2 \pi i \vec{H}}{r}}=e^{\vec{X}} e^{\frac{2 \pi i \vec{H}}{r}} \\
\tilde{\tau}=\frac{\tau}{r \tau-1}, \quad \tilde{\sigma}=\frac{\sigma}{r \tau-1}, \quad \tilde{X}=\frac{X}{r \tau-1}, \quad \tilde{H}=r-H
\end{array}
$$

Factorisation \leftrightarrow dynamical anomaly cancellation. \mathcal{A}, extracted by an $S L(3, Z)$ transformation, is the contribution of background anomalies.

In 3d and 4d the factorisation can be understood in various ways:

- as the result of an alternative localisation scheme, Higgs branch localisation, where the localising loci are vortices [Benini-Peelaers], [Fujitsuka-Honda-Yoshida].
- as a consequence of the quasi-topological nature of partition functions left invariant by deformation to cigars connected by infinitively long tubes: effective projection
[Alday-Martelli-Richmond-Sparks].
- in the more general $t t^{*}$ setup, developed for 3d and 4d theories [Cecotti-Gaiotto-Vafa].

In 5d the factorisation is already present on the Coulomb branch.

Example: $\mathcal{N}=1$ theories on S^{5}

Localisation on $\omega_{1}^{2}\left|z_{1}\right|^{2}+\omega_{2}^{2}\left|z_{2}\right|^{2}+\omega_{3}^{2}\left|z_{3}\right|^{2}=1$ yields:
[Kallen-Zabzine],[Hosomichi-Seong-Terashima],[Kim-Kim-Kim],[Lockart-Vafa]

$$
\Rightarrow Z_{S^{5}}=\int d \sigma Z_{c l} Z_{1 \text { loop }} \|\left.\mathcal{Z}_{\text {inst }}^{5 d}\right|_{S} ^{3}
$$

- $\mathbb{R}^{4} \times S^{1}$ instantons $\mathcal{Z}_{\text {inst }}^{5 d}\left(e^{2 \pi \sigma / e_{3}}, e^{2 \pi \vec{m} / e_{3}} ; q, t\right)$ are localized at fixed points of the Hopf fibration and are glued as:

$$
\begin{gathered}
\left\|f\left(e^{2 \pi z / e_{3}} ; \boldsymbol{q}, t\right)\right\|_{S}^{3}:=\prod_{k=1}^{3} f\left(e^{2 \pi z / e_{3}} ; \boldsymbol{q}, t\right)_{k}, \quad \boldsymbol{q}=e^{2 \pi i e_{1} / e_{3}}, t=e^{2 \pi i e_{2} / e_{3}} \\
\left(e_{1}, e_{2}, e_{3}\right)=\left(\omega_{3}, \omega_{2}, \omega_{1}\right),\left(\omega_{1}, \omega_{3}, \omega_{2}\right),\left(\omega_{1}, \omega_{2}, \omega_{3}\right) \quad \text { for } \quad k=1,2,3
\end{gathered}
$$

- 1-loop contributions are: expressed in terms of triple-sine functions:

$$
S_{3}(x)=\prod_{i, j, k}\left(i \omega_{1}+j \omega_{2}+k \omega_{3}+x\right)\left(i \omega_{1}+j \omega_{2}+k \omega_{3}+E-x\right), \quad E=\omega_{1}+\omega_{2}+\omega_{3} .
$$

It is possible to factorise the classical (Yang-Mills and Chern-Simons terms) and 1loop parts

$$
Z_{c l} Z_{1 \text { loop }}=\left\|\mathcal{Z}_{\text {cl }} \mathcal{Z}_{1 \text { loop }}\right\|_{S}^{3}
$$

using that [Felder-Varchenko]:

$$
e^{-\frac{2 \pi i}{3!} B_{33}(x, \vec{\omega})}=\left\|\Gamma_{q, t}\left(x / e_{3}\right)\right\|_{S}^{3}, \quad \Gamma_{q, t}(z)=\frac{\left(e^{-2 \pi i z} q t ; q, t\right)}{\left(e^{2 \pi i z} ; q, t\right)}
$$

and

$$
S_{3}(i z)=e^{-\frac{\pi i}{3!} B_{33}(i z)}\left\|\left(e^{-\frac{2 \pi}{e_{3}} z} ; q, t\right)\right\|_{S}^{3}
$$

and obtain the block factorized form which respects periodicity (invariance under shift $z \rightarrow z+i k \omega_{i}$) in each sector:

$$
Z_{S^{5}}=\int d \sigma\left\|\mathcal{B}^{5 d}\right\|_{S}^{3}, \quad \mathcal{B}^{5 d}:=\mathcal{Z}_{\text {cl }} \mathcal{Z}_{1 \text {-loop }} \mathcal{Z}_{\text {inst }}^{5 d}
$$

\rightarrow these blocks are universal!

5-manifolds from solid tori $\mathbb{R}_{\epsilon_{1}, \epsilon_{2}}^{4} \times S^{1}$ gluing

It is possible to introduce a set of 5d holomorphic blocks, such that:
[Nieri-SP-Passerini-Torrielli]

$$
z_{S^{4} \times S^{1}}=\int d \sigma\left\|\mathcal{B}^{5 d}\right\|_{i d}^{2}, \quad z_{5^{5}}=\int d \sigma\left\|\mathcal{B}^{5 d}\right\|_{S^{3}}^{3}, \quad \cdots
$$

Now id, S are elements in $S L(3, Z)$ to glue the three boundary circles.
Generalisation to $\mathcal{N}=1$ theories on toric Sasaki-Einstein manifolds, T^{3} fibrations over an n-gon, [Qiu-Tizzano-Winding-Zabzine]

$$
Z_{n}=\int d \sigma \prod_{k=1}^{n}\left(\mathcal{B}^{5 d}\right)_{k}
$$

So far: all the exact results for SUSY partition functions on compact manifolds in various dimensions, derived via localisation, can be re-obtained by gluing a small set of building blocks.
Next: construct new results, add defect operators, explore more general backgrounds ...

There are two more very important examples:

- $4 \mathrm{~d} \mathcal{N}=2$ theories on $S^{4}:$ Pestun]

$$
Z_{S^{4}}=\int d \sigma Z_{c l} Z_{1 \text { loop }}\left|\mathcal{Z}_{\text {inst }}^{4 d}\right|^{2}=\int d \sigma\left|\mathcal{B}^{4 d}\right|^{2}
$$

- $\mathcal{N}=(2,2)$ theories on S^{2} : [Droud-Gomis-Le Floch-Lee], [Benini-Cremonesi]

$$
Z_{S^{2}}=\sum_{\alpha}\left|\mathcal{B}_{\alpha}^{2 d}\right|^{2}
$$

Remarkably $\mathcal{B}^{4 d}, \mathcal{B}^{2 d}$ are the building blocks of another theory: they are (normalised) Toda CFT conformal blocks. This is the main statement of the AGT correspondence.

AGT correspondence

The Alday-Gaiotto-Tachikawa correspondence relates:

- 4d "class S " $\mathcal{N}=2$ gauge theories $\mathcal{T}_{g, n}$, obtained wrapping M5 on $C_{g, n}$ [Gaiotto]. These theories enjoy S-duality corresponding to different pant-decompositions of $C_{g, n}$.
- Liouville theory on $C_{g, n}$. It is a non-rational 2d CFT, characterised by 3-point functions and spectrum. Consistency requires modular invariance of correlators.
$\left.\left\langle\prod_{i}^{n} V_{\alpha_{i}}\right\rangle\right\rangle_{g_{g, n}}=\int D \alpha C \cdots C\left|\mathcal{F}_{\alpha}^{\alpha_{i}}\right|^{2}=\int[D a] Z_{1 l o o p}\left|\mathcal{Z}_{c l} \mathcal{Z}_{\text {inst }}^{4 d}\right|^{2}=Z_{S^{4}}\left[\mathcal{T}_{g, n}\right]$

2dCFT	4d gauge theory
Virasoro conf block $: \mathcal{F}_{\alpha}^{\alpha_{i}}$	$\mathcal{Z}_{\text {inst }}^{4 d}$
3point functions : $C\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$	$Z_{1 l o o p}$
cross ratio z	$e^{2 \pi i \tau}$
external momenta α_{i}	masses m_{i}
internal momentum α	coulomb branch a

CFT modular invariance \Leftrightarrow generalised $\mathcal{N}=2$ S-duality

Simple surface operators \Leftrightarrow degenerate primaries $\left(L_{-2}+\frac{1}{b^{2}} L_{-1}^{2}\right) V_{-b / 2}=0$ [Alday-Gaiotto-Gukov-Tachikawa-Verlinde]

$$
Z_{\text {inst }}=\sum_{Y_{1}, Y_{2}}(. .) \Sigma_{W_{1}, W_{2}}(. .) \quad Z_{\text {inst }}=\sum_{Y_{1}, Y_{2}}(. .) \Sigma_{0,1^{n}}(. .) \quad Z_{\text {inst }}=\Sigma_{0,1^{n}}(. .)=Z_{V}
$$

- degenerate conformal blocks \leftrightarrow vortex counting [Dimofte-Gukov-Hollands],[Kozcaz-Pasquetti-Wyllard].
- degenerate correlators $\leftrightarrow S^{2}$ partition functions
[Droud-Gomis-LeFloch-Lee],[Gomis-LeFloch]

$$
\left\langle V_{\alpha_{4}} V_{\alpha_{3}}(1) V_{-b / 2}\left(z_{1}\right) \cdots V_{-b / 2}\left(z_{k}\right) V_{\alpha_{1}}\right\rangle=Z_{S_{2}}
$$

flop symmetry \Leftrightarrow crossing symmetry

Is there a $5 d-3 d$ analogue?

Hint 1: $\mathcal{Z}_{\text {inst }}^{5 d} \leftrightarrow q$-deformed Virasoro chiral blocks. [Awata-Yamada],[many
others]
Hint 2: $5 d \rightarrow 3 d$ degeneration of $\mathcal{N}=1$ partition functions.

Conjecture: S^{5} and $S^{4} \times S^{1}$ partition functions are captured by q-deformed Liouville correlators. [Nieri-SP-Passerini]

But what is q-deformed Liouville?

q-deformed Virasoro algebra $\mathcal{V i r}_{q, t}$

$\mathcal{V} i_{q, t}$ has two complex parameters q, t and generators T_{n} with $n \in \mathbb{Z}$.
[Shiraishi-Kubo-Awata-Odake],[Lukyanov-Pugai], [Frenkel-Reshetikhin],[Jimbo-Miwa]

$$
\begin{aligned}
{\left[T_{n}, T_{m}\right]=} & -\sum_{l=1}^{+\infty} f_{l}\left(T_{n-l} T_{m+l}-T_{m-l} T_{n+l}\right) \\
& -\frac{(1-q)\left(1-t^{-1}\right)}{1-p}\left((q / t)^{n}-(q / t)^{-n}\right) \delta_{m+n, 0}
\end{aligned}
$$

where $f(z)=\sum_{l=0}^{+\infty} f_{l} z^{\prime}=\exp \left[\sum_{l=1}^{+\infty} \frac{1}{n} \frac{\left(1-q^{n}\right)\left(1-t^{-n}\right)}{1+(q / t)^{n}} z^{n}\right]$

- For $t=q^{-b_{0}^{2}}$ and $q \rightarrow 1, \mathcal{V}_{\text {ir }}$, reduces to Virasoro.
- Emerge as symmetries of solvable 2d lattice models.
- Verma module construction (singular states), Dotsenko-Fateev like integral representation are known [Mironov-Morozov-Shakirov],
[Aganagic-Haouzi-Kozcaz-Shakirov].
\rightarrow "5d AGT": $\mathcal{Z}_{\text {inst }}^{5 d} \leftrightarrow \mathcal{V}^{2} r_{q, t}$ chiral blocks [Awata-Yamada, $\left.\cdots\right]$

Degeneration of 5 d partition function

For special values of mass parameters integrals defining partition functions localize to discrete sums and satisfy difference equations.

Poles in $Z_{1 \text {-loop }}^{S^{5}}$ and $Z_{1 \text {-loop }}^{S^{4} \times S^{1}}$ move and pinch the integration contour; the (meromorphic) continuation of partition functions requires taking residues of poles crossing the integration path.
\rightarrow A similar mechanisms reduces non-degenerate Liouville correlators to degenerate ones, which satisfy differential equations. [Ponsot-Teschner]

Example: consider the $S U(2), N_{f}=4$ theory on S^{5}. The poles structure of $Z_{1 \text {-loop }}^{S^{5}}$ is such that:
for $m_{1}+m_{2}=-i \omega_{3} \quad$ the integral localizes

$$
\int d \sigma \Rightarrow \sum_{\left\{\sigma_{1}, \sigma_{2}\right\}}
$$

When evaluated on $\sigma=\left\{\sigma_{1}, \sigma_{2}\right\}$, instantons degenerate to vortices:

$$
\begin{gathered}
\mathcal{Z}_{\text {inst }, 1}^{5 d}=\sum_{Y_{1}, \gamma_{2}}(\cdots) \rightarrow \sum_{0,1^{n}}(\cdots)=\mathcal{Z}_{V}^{(i)}, \quad \mathcal{Z}_{\text {inst }, 2}^{5 d}=\sum_{W_{1}, W_{2}}(\cdots) \rightarrow \sum_{0, n}(\cdots)=\tilde{\mathcal{Z}}_{V}^{(i)}, \\
\mathcal{Z}_{\text {inst, } 3 d}^{5 d, I I}=\sum_{X_{1}, X_{2}}(\cdots) \rightarrow \sum_{0,0}(\cdots)=1
\end{gathered}
$$

and:

$$
Z_{S^{5}}^{S C Q C D}=\int d \sigma Z_{c l} Z_{1-\text { loop }}^{S^{5}}\left\|\mathcal{Z}_{\text {inst }}^{5 d}\right\|_{S}^{3} \Rightarrow \sum_{i}^{2}\left\|\mathcal{B}_{i}^{D^{2} \times S^{1}}\right\|_{S}^{2}=Z_{S^{3}}^{S Q E D}
$$

An identical degeneration works for permutations of $\omega_{1}, \omega_{2}, \omega_{3}$, corresponding to the three big S^{3} inside S^{5}.
A similar mechanisms for $m_{1}+m_{2}=-i b_{0}$ leads to

$$
Z_{S^{4} \times S^{1}}^{S C Q C D} \Rightarrow Z_{S^{2} \times S^{1}}^{S Q E D}
$$

\rightarrow to be reinterpreted as degenerations of q-correlators.

Liouville CFT correlators can be defined and computed in a purely axiomatic fashion, without using the Lagrangian.

- conformal blocks are determined by the Virasoro algebra
- 3-point functions can be obtained using degenerate reps of the Virasoro algebra + crossing symmetry=bootstrap approach
[Belavin-Polyakov-Zamolodchikov],[Teschner]

We define and compute q-deformed Liouville correlators in a purely axiomatic fashion, without knowing the Lagrangian:

- chiral blocks are determined by the $\mathcal{V i r}_{q t}$ algebra
- we determine 3-point function using degenerate reps of the $\mathcal{V} i r_{q t}$ algebra + crossing symmetry + gluing prescription (inspired by gauge theory $)=q$-deformed bootstrap approach

q-deformed Bootstrap Approach

Consider a 4-point correlator with a degenerate insertion

$$
\left\langle V_{\alpha_{4}}(\infty) V_{\alpha_{3}}(r) V_{\alpha_{2}}(z, \tilde{z}) V_{\alpha_{1}}(0)\right\rangle \sim G(z, \tilde{z})
$$

Correlators with degenerate primaries (singular states in the Verma module) satisfy difference equations. For the lowest degenerate we find:
[Awata-Kubo-Morita-Odake-Shiraishi], [Awata-Yamada], [Schiappa-Wyllard]

$$
D(A, B ; C ; q ; z) G(z, z)=0, \quad D(\tilde{A}, \tilde{B} ; \tilde{C} ; \tilde{q} ; \tilde{z}) G(z, \tilde{z})=0,
$$

where $D(A, B ; C ; q ; z)$ is the q-hypergeometric operator.
$\rightarrow G(z, \tilde{z})$ is a bilinear combination of solutions

Around $z=0$
$l_{1}^{(s)}={ }_{2} \Phi_{1}(A, B ; C ; z), \quad l_{2}^{(s)}=\frac{\theta\left(q^{2} C^{-1} z^{-1} ; q\right)}{\theta\left(q C^{-1} ; q\right) \theta\left(q z^{-1} ; q\right)}{ }_{2} \Phi_{1}\left(q A C^{-1}, q B C^{-1} ; q^{2} C^{-1} ; z\right)$
For $q \rightarrow 1$ becomes the undeformed s-channel basis.
s-channel correlator:

$$
\begin{gathered}
\left\langle V_{\alpha_{4}}(\infty) V_{\alpha_{3}}(r) V_{\alpha_{2}}(z) V_{\alpha_{1}}(0)\right\rangle \sim \sum_{i, j=1}^{2} \tilde{I}_{i}^{(s)} K_{i j}^{(s)} I_{j}^{(s)} \\
\quad=\sum_{i=1}^{2} K_{i i}^{(s)}\left\|I_{i}^{(s)}\right\|_{*}^{2}=\sum_{i} \frac{\alpha_{2}}{\alpha_{1}}{ }_{\alpha_{i}^{(s)}}^{\alpha_{3}} \alpha_{4}
\end{gathered}
$$

$K_{i j}^{(s)}$ is diagonal with elements related to 3-point functions:
$K_{i i}^{(s)}=C\left(\alpha_{4}, \alpha_{3}, \beta_{i}^{(s)}\right) C\left(Q_{0}-\beta_{i}^{(s)},-b_{0} / 2, \alpha_{1}\right), \quad \beta_{i}^{(s)}=\alpha_{1} \pm \frac{b_{0}}{2}, \quad i=1,2$
\rightarrow we will need to prescribe the gluing $\|(\cdots)\|_{*}^{2}$

Around $z=\infty$

$$
\begin{aligned}
& I_{1}^{(u)}=\frac{\theta\left(q A^{-1} z^{-1} ; q\right)}{\theta\left(A^{-1} ; q\right) \theta\left(q z^{-1} ; q\right)}{ }_{2} \Phi_{1}\left(A, q A C^{-1} ; q A B^{-1} ; q^{2} z^{-1}\right), \\
& I_{2}^{(u)}=\frac{\theta\left(q B^{-1} z^{-1} ; q\right)}{\theta\left(B^{-1} ; q\right) \theta\left(q z^{-1} ; q\right)}{ }_{2} \Phi_{1}\left(B, q B C^{-1} ; q B A^{-1} ; q^{2} z^{-1}\right)
\end{aligned}
$$

For $q \rightarrow 1$ limit becomes the undeformed u-channel basis.
u-channel correlator:

$$
\begin{aligned}
& \left\langle V_{\alpha_{4}}(\infty) V_{\alpha_{3}}(r) V_{\alpha_{2}}(z) V_{\alpha_{1}}(0)\right\rangle \sim \sum_{i, j=1}^{2} \tilde{l}_{i}^{(u)} K_{i j}^{(u)} l_{j}^{(s)} \\
& \quad=\sum_{i=1}^{2} K_{i i}^{(u)}\left\|l_{i}^{(u)}\right\|_{*}^{2}=\sum_{i} \sum_{\alpha_{1} \beta_{i}^{(u)}}^{\alpha_{2}} \alpha^{\alpha_{3}}
\end{aligned}
$$

$K_{i j}^{(u)}$ is diagonal with elements related to 3-point functions

$$
K_{i i}^{(u)}=C\left(\alpha_{1}, \alpha_{3}, \beta_{i}^{(u)}\right) C\left(Q_{0}-\beta_{i}^{(u)},-b_{0} / 2, \alpha_{4}\right), \quad \beta_{i}^{(u)}=\alpha_{4} \pm \frac{b_{0}}{2}, \quad i=1,2
$$

impose crossing symmetry

$$
K_{11}^{(s)}\left\|I_{1}^{(s)}\right\|\left\|_{*}^{2}+K_{22}^{(s)}\right\| I_{2}^{(s)}\left\|_{*}^{2}=K_{11}^{(u)}\right\| I_{1}^{(u)}\left\|_{*}^{2}+K_{22}^{(u)}\right\| I_{2}^{(u)} \|_{*}^{2}
$$

analytic continuation $I_{i}^{(s)}=\sum_{j=1}^{2} M_{i j} l_{j}^{(u)}, \tilde{I}_{i}^{(s)}=\sum_{j=1}^{2} \tilde{M}_{i j} \tilde{I}_{j}^{(u)}$ yields:

$$
\sum_{k, l=1}^{2} K_{k l}^{(s)} \tilde{M}_{k i} M_{l j}=K_{i j}^{(u)}
$$

Now we need an ansatz for the gluing rule:
$\Rightarrow S^{5}$ gluing rule \rightarrow 3-point function $C_{S}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$

- $S^{4} \times S^{1}$ gluing rule \rightarrow 3-point function $C_{i d}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$

3-point functions

- $S^{4} \times S^{1}$ gluing rule $\rightarrow i d$-correlators:

$$
C_{i d}\left(\alpha_{3}, \alpha_{2}, \alpha_{1}\right)=\frac{1}{\Upsilon^{\beta}\left(2 \alpha_{T}-Q_{0}\right)} \prod_{i=1}^{3} \frac{\Upsilon^{\beta}\left(2 \alpha_{i}\right)}{\Upsilon^{\beta}\left(2 \alpha_{T}-2 \alpha_{i}\right)}
$$

where $2 \alpha_{T}=\alpha_{1}+\alpha_{2}+\alpha_{3}, Q_{0}=b_{0}+1 / b_{0}, b_{0}$ is the S^{4} squashing parameter and β is the S^{1} radius.

- S^{5} gluing rule $\rightarrow S$-correlators:

$$
C_{S}\left(\alpha_{3}, \alpha_{2}, \alpha_{1}\right)=\frac{1}{S_{3}\left(2 \alpha_{T}-E\right)} \prod_{i=1}^{3} \frac{S_{3}\left(2 \alpha_{i}\right)}{S_{3}\left(2 \alpha_{T}-2 \alpha_{i}\right)}
$$

where $E=\omega_{1}+\omega_{2}+\omega_{3}$ and $\omega_{1}, \omega_{2}, \omega_{3}$ are the S^{5} squashing parameters.

$$
\begin{aligned}
\Upsilon^{\beta}(X) & \propto \prod_{n_{1}, n_{2}=0}^{\infty} \sinh \left[\frac{\beta}{2}\left(X+n_{1} b_{0}+\frac{n_{2}}{b_{0}}\right)\right] \sinh \left[\frac{\beta}{2}\left(-X+\left(n_{1}+1\right) b_{0}+\frac{\left(n_{2}+1\right)}{b_{0}}\right)\right] \\
S_{3}(X) & \propto \prod_{n_{1}, n_{2}, n_{3}=0}\left(\omega_{1} n_{1}+\omega_{2} n_{2}+\omega_{3} n_{3}+X\right)\left(\omega_{1} n_{1}+\omega_{2} n_{2}+\omega_{3} n_{3}+E-X\right)
\end{aligned}
$$

With a suitable dictionary (akin to the AGT dictionary) we can map q-correlators to $5 d$ partition functions.

Examples:

- 5d SQCD, $S U(2), N_{f}=4$ theory $\Leftrightarrow 4$-point correlator

$$
\begin{aligned}
Z_{S^{4} \times S^{1}}^{S Q C D} & =\left\langle V_{\alpha_{1}} V_{\alpha_{2}} V_{\alpha_{3}} V_{\alpha_{4}}\right\rangle_{i d} \\
Z_{S^{5}}^{S Q C D} & =\left\langle V_{\alpha_{1}} V_{\alpha_{2}} V_{\alpha_{3}} V_{\alpha_{4}}\right\rangle_{S}
\end{aligned}
$$

- 5d $\mathcal{N}=1^{*} S U(2)$ theory $\Leftrightarrow 1$-point torus correlator

$$
\begin{aligned}
& Z_{S^{4} \times S^{1}}^{\mathcal{N}=1^{*}}=\left\langle V_{\alpha_{1}}\right\rangle_{i d} \\
& Z_{5^{5}}^{\mathcal{N}=1^{*}}=\left\langle V_{\alpha_{1}}\right\rangle_{S}
\end{aligned}
$$

Brief summary and open questions

The factorisation of 5 d partition functions in terms of 5 d holomorphic blocks $\mathcal{B}^{5 d}$ and their identification with chiral $\mathcal{V} i_{q t}$ blocks, suggest to map 5d partition functions to q-deformed Liouville correlators.

We defined q-deformed Liouville correlators in terms of $\mathcal{V} i_{q t}$ blocks and 3 -point functions and showed that indeed they can be mapped to 5d partition functions.
-We need to investigate the full duality group of q-deformed correlators (what is the q-deformation of the Moore-Seiberg groupoid?)
So far we know that degenerate q-correlators are crossing symmetry invariant (we imposed this in the bootstrap).
-What is the 5d gauge theory interpretation of q-correlators dualities?
-Can we define Verlinde-loop operators in the q-deformed case? What is their gauge theory dual?

Our approach so far has been purely axiomatic/algebraic. To construct q-correlators we only used representations of $\mathcal{V} i_{q t}$ and imposed associativity of the operator algebra (crossing symmetry).

It'd be interesting to have a more geometric/semiclassical description of the these theories.

In Liouville theory an interesting object which bridges between the axiomatic and the semiclassical approach is the reflection coefficient.

Reflection coefficient

- exact reflection coefficient from DOZZ 3-point function:

$$
R^{L}=\frac{C\left(Q_{0}-\alpha_{1}, \alpha_{2}, \alpha_{3}\right)}{C\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)} \sim \frac{\Gamma\left(2 i P b_{0}\right) \Gamma\left(2 i P / b_{0}\right)}{\Gamma\left(-2 i P b_{0}\right) \Gamma\left(-2 i P / b_{0}\right)}, \quad P=i\left(\alpha-Q_{0} / 2\right)
$$

- semiclassical ($b_{0} \rightarrow 0$) reflection coefficient from mini-superspace

$$
\left(-\partial_{\phi_{0}}^{2}+e^{2 b_{0} \phi_{0}}\right) \Psi=E \Psi
$$

with solution

$$
\psi \sim e^{2 i P \phi_{0}}+R(P) e^{-2 i P \phi_{0}},
$$

yielding

$$
R(P) \sim \frac{\Gamma\left(2 i P / b_{0}\right)}{\Gamma\left(-2 i P / b_{0}\right)}
$$

\rightarrow captures only half of the exact result.

1d Schrödinger problems can be mapped to free motion in curved spaces.
The radial part of Laplace-Beltrami operator on the Lobachevsky space $\simeq S L(2, \mathbb{C}) / S U(2)$ reduces to the Liouville wall problem with asymptotics

$$
\psi_{\lambda}(x) \sim c(\lambda) e^{i \lambda x}+c(-\lambda) e^{-i \lambda x} \quad \text { as } \quad x \rightarrow-\infty
$$

The coefficients $c(\pm \lambda)$ are the Harish-Chandra c-functions:

$$
c(\lambda)=\frac{1}{\Gamma(1+2 i \lambda)}, \quad R=\frac{c(-\lambda)}{c(\lambda)}=-\frac{\Gamma(2 i \lambda)}{\Gamma(-2 i \lambda)}
$$

with the identification of the spectral parameter $\lambda=P / b_{0}$ reproduces the semiclassical Liouville result.
c-functions of any classical symmetric space, can be expressed as

$$
c(\lambda)=\prod_{\alpha \in \Delta^{+}} \frac{1}{\Gamma(I+\lambda \cdot \alpha)},
$$

where $I=1,1 / 2$ for finite dimensional or affine Lie algebras.

Affinisation

[Gerasimov et al.] observed that the exact Liouville reflection coefficient can be obtained considering the affine version of the group

$$
\mathfrak{s l l}(2) \rightarrow \hat{\mathfrak{s l}}(2) .
$$

Adding the affine root α_{0} to the positive root α_{1} and choosing
$\lambda \cdot\left(\alpha_{0}+\alpha_{1}\right)=\tau, \quad \lambda \cdot \alpha_{1}=2 i P / b_{0}-1 / 2, \quad \lambda \cdot \alpha_{0}=\tau-2 i P / b_{0}+1 / 2$, the c-function becomes
$c(P)^{-1} \equiv \Gamma\left(2 i P / b_{0}\right) \prod_{n \geq 1} \Gamma\left(2 i P / b_{0}+n \tau\right) \Gamma\left(1-2 i P / b_{0}+n \tau\right) \Gamma(1 / 2+n \tau)$,
yielding

$$
\frac{c(-P)}{c(P)} \sim-\frac{\Gamma\left(2 i P / b_{0}\right)}{\Gamma\left(-2 i P / b_{0}\right)} \frac{\Gamma\left(2 i P / b_{0} \tau\right)}{\Gamma\left(-2 i P / b_{0} \tau\right)}
$$

with $\tau=1 / b_{0}^{2}$ matches the exact Liouville result R_{L}.
Message: affinisation \leftrightarrow effective 2nd quantisation.

id-reflection coefficient

From 3-point functions we find the exact reflection coefficient:

$$
R_{i d}=\frac{C_{i d}\left(Q_{0}-\alpha, \alpha_{2}, \alpha_{1}\right)}{C_{i d}\left(\alpha, \alpha_{2}, \alpha_{1}\right)} \sim \frac{\Gamma_{q}\left(2 i P b_{0}\right) \Gamma_{t}\left(2 i P / b_{0}\right)}{\Gamma_{q}\left(-2 i P b_{0}\right) \Gamma_{t}\left(-2 i P / b_{0}\right)}
$$

with $q=e^{\beta / b_{0}}, t=e^{\beta b_{0}}$ and $\Gamma_{q}(x) \equiv \frac{(q ; q)_{\infty}}{\left(q^{x} ; q\right)_{\infty}}(1-q)^{1-x}$.
Analogy with semiclassical Liouville suggests to take

$$
c(\lambda)=\Gamma_{t}(I+\lambda \cdot \alpha)^{-1}
$$

this is the c-function of the quantum Lobachevsky space where $\mathfrak{s l}(2) \rightarrow U_{q}(\mathfrak{s l}(2))$ [Olshanetsky-Rogov].
Taking the affine version and defining $q=t^{\tau}, \tau=1 / b_{0}^{2}$, we recover the exact reflection coefficient:
$c(P) \sim \frac{\left(t^{2 i P / b_{0}} ; q, t\right)\left(t^{1-2 i P / b_{0}} ; q, t\right)}{\left(t^{1-2 i P / b_{0}} ; t\right)}, \quad \frac{c(-P)}{c(P)} \sim \frac{\Gamma_{q}\left(2 i P b_{0}\right) \Gamma_{t}\left(2 i P / b_{0}\right)}{\Gamma_{q}\left(-2 i P b_{0}\right) \Gamma_{t}\left(-2 i P / b_{0}\right)}$.

S-reflection coefficient

From 3-point functions we find the exact reflection coefficient:

$$
R_{S}=\frac{C_{S}\left(E-\alpha, \alpha_{2}, \alpha_{1}\right)}{C_{S}\left(\alpha, \alpha_{2}, \alpha_{1}\right)}=\frac{S_{3}(-2 i P \mid \vec{\omega})}{S_{3}(2 i P \mid \vec{\omega})}, \quad P=i \alpha-i E / 2 .
$$

We take a c-function given in terms of the double-Gamma function:

$$
c(P)=\Gamma_{2}\left(2 i P / \kappa \mid e_{1}, e_{2}\right)^{-1}, \quad e_{1}+e_{2}=1 .
$$

This c-function have been argued to arise in generalised symmetric spaces and to be part of a hierarchy of integrable systems, whose S-matrix building blocks are Γ_{n} functions [Freund-Zabrodin].
Finally the affinisation prescription yields the exact reflection coefficient:

$$
\begin{aligned}
& c(P)^{-1}= \prod_{n \geq 0} \Gamma_{2}\left(2 i P / \kappa+n \tau \mid e_{1}, e_{2}\right) \Gamma_{2}\left(1-2 i P / \kappa+(n+1) \tau \mid e_{1}, e_{2}\right) \\
& \prod_{n \geq 1} \Gamma_{2}\left(1 / 2+n \tau \mid e_{1}, e_{2}\right)=S_{3}(2 i P \mid \vec{\omega})^{-1}, \\
& \text { with } \omega=\kappa\left(e_{1}, e_{2}, \tau\right)
\end{aligned}
$$

Relation to S-matrices

\rightarrow The appearance of the XXZ spin-chain is not surprising: SUSY vacua of $3 \mathrm{~d} \mathcal{N}=2$ theories can be mapped to eigenstates of spin-chain Hamiltonians [Nekrasov-Shatashivili], 3d blocks satisfy the Baxter equation for the XXZ spin chain [Gadde-Gukov-Putrov].

THANK YOU!

