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In recent years many exact results for gauge theories on compact
manifolds have been obtained by the method of SUSY localisation.

The idea is that by adding a Q-exact term to the action it is possible to
reduce the path integral to a finite dimensional integral:

Localisation:  Zyg = [ Dype™M = [ DWgeSMVol Z; 1,0, [Wo]
Wy: field configurations satisfying localising (saddle point) equations

with a clever localisation scheme, Wy is a finite dimensional set
Z1-100p[Wo] is due to the quadratic fluctuation around W¥g

= useful to study holography

= connect to exactly solvable models such as 2d CFTs and TQFTs



So far exact results have been obtained for

$2,52 x S§1,53/7,,53 /7, x 51,5% 5% x SV, 85, Y, .- -
[Benini-Cremonesi],[Droud-Gomis-LeFloch-Lee], [Kapustin-Willett-Yaakov],
[Imamura-Yokoyama|,[Kapustin-Willet],[Gadde-Pomoni-Rastelli-Razamat], [Kim-Kim-
Lee],[Terashimal,[Igbal-Vafa],[Kallen-Zabzine],[Kallen-Qiu-Zabzine|,[Hosomichi-Seong-

Terashimal,[Imamura,[Lockhart-Vafa],[ Kim-Kim-Kim]. . .

Comprehensive formalism for SUSY theories formulated on curved
manifolds initiated in [Festuccia-Seiberg]. Recent developments:

4d, N =1 theories with U(1)g can be defined on complex manifolds
with an Hermitian metric. Partition functions are " topological
quantities”: they are metric independent and compute complex
structures and holomorphic vector bundles (defined by background gauge
fields) invariants. Similar results for 3d, N = 2 theories

[Closset-Dumitrescu-Festuccia-Komargodski].

... localisation computations are long, geometric data hidden.
Is there a set of building blocks to construct partition functions?

Are there new integrable structures associated to these blocks?
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Is there a QFT analogue of this decomposition?

Yes, N = 2 partition functions can be factorised into holomorphic-blocks
[SP], [Beem-Dimofte-SP],[Nieri-SP, to appear]
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a labels SUSY vacua, X, flavor parameters, g = e2™i7 is the boundary
torus complex structure and

. ar+b a b 1 0
T%T—m, <C d)e(o 1)5L(2,Z)
Factorisation<>dynamical parity anomaly cancellation. P is the
contribution of background mixed Chern-Simons terms.



The Coulomb branch localisation of A/ = 2 theories on the lens space
53/Zr ylelds [Benini-Nishioka-Yamazaki], [Imamura-Matsuno-Yokoyama]

r—1
Zss)y, = E /dz Za(Z, I, m, Hywi,wo, r) - Zitoop(Z, I; mi, H, w1, wo, r)
=0
I, H are dynamical and flavor holonomies, rii are mass parameters, wi »
are complex structure parameters (squashing).

A chiral multiplet in the fundamental representation contributes as

Zioes = HHSb —t—H (Sznﬂa>v

a=1n=1

The function §, 5, is the projection of the double Sine function:

§_n(2) = eEGI—)—(-0) [ Dead et Q/2~iz

mwy + mwy + Q/2 + iz
n1,m>0
np—ni=h mod r



Performing the integration (residues computation) and summing over the
holonomies we find [Nieri-SP, to appear],[Imamaura-Yokoyama]
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This gluing rule is consistent with the realisation of L(r,1) from a pair of
solid tori [0,1] x T2,



can be defined as basis of solutions to difference equations.

Example: the SQED, U(1) theory with Nf flavours and Fl parameter
u, are solutions (a« = 1, - - Nf) of the g-hypergeometric difference
equation

852X51 )?'q _ Xa U, q qXJ « ’q Z(O‘)7
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difference equations are solved by block integrals: [Beem-Dimofte-SP]

BBZXSI()?; q) = /C dis_T(s,)‘(; C])

. 2mis

Cq are all convergent (downward-flow) contours.

at special values of (X, g), Stokes walls contours can jump.
the block integrand (s, X; q) has been recently rederived via
localisation on D2 X 51 [Yoshida-Sugiyama)]



Holomorphic blocks are defined by g-series (defined for |g| # 1).

When |g| < 1 we have |§| > 1, the g-series and the §-series
converge to different functions.

Example: the free chiral

BDZXSI( ) i (—l)nqwx_” Hnoio (1 - qn+lx_l) ‘q| <1,
chiral \X:9) = I o 1
= (@ o (1—ax) 7" gl >1.

B2**S'(x; q) and B2°*S'(%; §) transform as independent functions!

At Stokes walls we have:
BY*S(%,q) — MEBY ™' (%,q), BE S (%,4) — (MTT)2BY (%, 4),

while partition functions stay invariant.



Arises by wrapping M5 branes on M x N, where M=hyperbolic
3-manifold and N = S}, S? x S1, D? x S! and states that:
[Dimofte-Gukov],[Dimofte-Gukov-Gaiottol,II]

T(M), 3d N' =2 theory on N <+ complex Chern-Simons on M

ideal tetrahedron < free chiral + half Chern-Simons unit
gluing tetrahedra <+ gauging flavour symmetries

internal edges <+ superpotential couplings

change of triangulation <> 3d mirror symmetry
fundamental move

V“&

gauged U(1) with 2 chirals +» 3 chirals with superpotential (XYZ)

— geometric classification of a large class of abelian mirror symmetries



Take the 3d V' = 2 theory on the solid torus N = D? x S?
SUSY vacua « in T(M) « flat SL(2,C) connections A* on M

holomorphic blocks BgZXSl (x,q) <> analytically continued
Chern-Simons partition functions Z$°(x, q) introduced by Witten.

Example: If M is the 4; knot complement T (41) is the U(1) theory with
2 chirals (for particular value of the masses).

two vacua, two blocks <+ two CS irreducible flat connections.

asymptotics for g = e, h — 0:

;
Z§£1,2(X> q) = BD =1,2 (X q) ~ exp (h[i2-0298]>

— our block integrals are the first concrete examples of non-perturbative
path integrals in analytically continued CS along "exotic” integration
cycles (labelled by irreducible flat SL(2, C) connections).
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There is a corresponding factorisation of A = 1 partition functions

[Peelaers],[Yoshidal, [Nieri-SP,to appear]. Example:

2
_ D?xT?( 2.
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qT:em rwy :e27“'r7 g, =€ TR = e 27”‘7, X=e"rie"r =eXe

. T o o S X ~

T = s o= E— X = ——7, H =r— H
rr—1 rr—1 rr—1

Factorisation<>dynamical anomaly cancellation. A, extracted by an
SL(3, Z) transformation, is the contribution of background anomalies.




In 3d and 4d the factorisation can be understood in various ways:

as the result of an alternative localisation scheme, Higgs branch
localisation, where the localising loci are vortices [Benini-Peelaers],
[Fujitsuka-Honda-Yoshida].

as a consequence of the quasi-topological nature of partition
functions left invariant by deformation to cigars connected by
infinitively long tubes: effective projection
[Alday-Martelli-Richmond-Sparks].

in the more general tt* setup, developed for 3d and 4d theories
[Cecotti-Gaiotto-Vafa).

In 5d the factorisation is already present on the Coulomb branch.



Example: A/ = 1 theories on S°

Localisation on w?|z1|? 4+ w3|z|* + w3|z3|> = 1 yields:

[Kallen-Zabzine],[Hosomichi-Seong-Terashimal, [Kim-Kim-Kim],[Lockart-Vafa]

ZSd

inst

= Zss :/ do ZC,leoop

» R* x St instantons 229, (e?77/e e27M/es; g t) are localized at fixed
points of the Hopf fibration and are glued as:

3
3 . .
Hf—(e2‘rrz/eg; q, t)HS — | | f-(e27rz/e3; q, t)k7 q= e27rle1/637 t = e27rle2/eg
k=1

(e1, &2, &3) = (w3, w2, w1) ; (W1, w3, w2) , (w1, w2, w3) for k=1,2,3.
> 1-loop contributions are: expressed in terms of triple-sine functions:

S3(x) = H(iw1+jw2+kw3+x)(iw1+jw2+koJ3+E7x) , E =witwrtws.
i,k



It is possible to factorise the classical (Yang-Mills and Chern-Simons
terms) and lloop parts

3

chzlloop - HZCIZIIoop .S

usi ng that [Felder-Varchenko]:

(e72"2qt;q,t)

— 220 Bya (x,@) :
e 3 ) = Hrq7t(x/e3)‘ ‘5 ) rq,t(z) = (eZ'n'iz- q t)

and
27

i . _2n 3
Saliz) = e #5209 [(e7 5% q.1))|

and obtain the block factorized form which respects periodicity
(invariance under shift z — z + ikw;) in each sector:

3
[255 = f do HBSd‘ ‘5’ Bsd = Ll Zl—loop lenztj

— these blocks are universal!



5-manifolds from solid tori R? _ x S gluing

It is possible to introduce a set of 5d holomorphic blocks, such that:

[Nieri-SP-Passerini-Torrielli
5d 2 5d 3
ZS4X51:/daHB ’ : Zss:/daHB H ,
id S

Now id, S are elements in SL(3, Z) to glue the three boundary circles.

€

Generalisation to N/ = 1 theories on toric Sasaki-Einstein manifolds, T3
fibrations over an n-gon, [Qiu-Tizzano-Winding-Zabzine]

Z, :/ do kH:l (B°), .

So far: all the exact results for SUSY partition functions on compact
manifolds in various dimensions, derived via localisation, can be
re-obtained by gluing a small set of building blocks.

Next: construct new results, add defect operators, explore more general
backgrounds ...



There are two more very important examples:

» 4d N'=2 theories on S*: [Pestun]
2 2
:/ do ‘84(1‘

> N = (2, 2) theories on 522 [Droud-Gomis-Le Floch-Lee],[Benini-Cremonesi]

Ze=%" ‘Bﬁ;’

Z4d

inst

Zss :/ do ZC/Z]./OOp

2

Remarkably B4/, 327 are the building blocks of another theory: they are
(normalised) Toda CFT conformal blocks. This is the main statement of
the AGT correspondence.



The Alday-Gaiotto-Tachikawa correspondence relates:

4d “class S” N = 2 gauge theories T, ,, obtained wrapping M5 on
Cg,n [Caiotto]. These theories enjoy S-duality corresponding to
different pant-decompositions of Cg .

Liouville theory on Cg . It is a non-rational 2d CFT, characterised
by 3-point functions and spectrum. Consistency requires modular
invariance of correlators.

n 2
<H Vai>Cg,n = /Da c---C ‘fgf|2 = /[Da] Z1loop ’chzﬁgt = ZS“[E,H]
i
2dCFT 4d gauge theory
Virasoro conf block : F&' Zﬁf’st
3point functions : C(ai, a2, a3) Zi1o0p
cross ratio z e2miT
external momenta «; masses m;
internal momentum « coulomb branch a

CFT modular invariance < generalised N' = 2 S-duality



Simple surface operators<degenerate primaries (L4 %L2;) V_p;, =0

[Alday-Gaiotto-Gukov-Tachikawa-Verlinde]

o, 04 a,
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<Vu(V(x,(l)Vu‘(Zl)Vu:(ZZ)Vu,> <V'kV(u(l)V\z\(zz)V7/1/2<Zl)Vn‘> <Vxx,Vm(l)V—b/z(Z)Vu,>

D4 - D4 ’,l'); - D4 'o,');
NS5 NS5 NS5
Zz‘n:l:ZY‘Y:(")ZW,Wl(") stx:Zy,yl(--)Zg_l"(--) Zwa=24, (--):ZV

degenerate conformal blocks <+ vortex counting
[Dimofte-Gukov-Hollands],[Kozcaz-Pasquetti-Wyllard].

degenerate correlators <> S? partition functions
[Droud-Gomis-LeFloch-Lee],[Gomis-LeFloch]

((VauVos(OVosa(21) -+~ Vool Vo) = Zs,)

flop symmetry < crossing symmetry



Is there a 5d — 3d analogue?

Hint 1: 239

inst 7 q—deformed Virasoro chiral blocks. [Awata-Yamada],[many

others]

Hint 2: 5d — 3d degeneration of N' = 1 partition functions.

Conjecture: S® and S* x S* partition functions are captured by
g-deformed Liouville correlators. [Nieri-SP-Passerini]

But what is g-deformed Liouville?



g-deformed Virasoro algebra Virg ;

Virg+ has two complex parameters g, t and generators T, with n € Z.
[Shiraishi-Kubo-Awata-Odake]|,[Lukyanov-Pugail,[Frenkel-Reshetikhin], [Jimbo-Miwal]

“+oo
[Tn7 Tm] = _Zﬁ(TnfleJrl - TmflTnle)
1=1
(l-g@-t

1—p ((q/1)" = (a/t)™")0m+n,0

where £(z) = X175 fi2! = exp [ 3§50 20

2 . .
» Fort=q % and g — 1, Virg,+ reduces to Virasoro.

> Emerge as symmetries of solvable 2d lattice models.

» Verma module construction (singular states), Dotsenko-Fateev like
integral representation are known [Mironov-Morozov-Shakirov],
[Aganagic-Haouzi-Kozcaz-Shakirov].

— "5d AGT": 22¢

inst <7 Virq,t chiral blocks [Awata-Yamada,- - -]



For special values of mass parameters integrals defining partition
functions localize to discrete sums and satisfy difference equations.

5 4 1
Poles in le_loop and le-|oxo§ move and pinch the integration contour;
the (meromorphic) continuation of partition functions requires taking
residues of poles crossing the integration path.

— A similar mechanisms reduces non-degenerate Liouville correlators to
degenerate ones, which satisfy differential equations. [Ponsot-Teschner]



Example: consider the SU(2), Nf = 4 theory on S°. The poles structure
of Z1 is such that:

loop

for my + my = —iws the integral localizes /da =

{o1,02}

When evaluated on o = {01, 02}, instantons degenerate to vortices:

/nstl Z( Z ) Zﬁgt2 Z()_)Z():N
0,n

Y1,Yo 0,17 Wy, ,W»p

Zogs = 2 () > () =1

X1,X 0,0

3 2 2 1
D*xS
.= 2 ||B
i

An identical degeneration works for permutations of wi,ws, ws,
corresponding to the three big S3 inside S°.

and:

5
ngCQCD :/ do chzls-loop Z

inst

ED
=727

A similar mechanisms for m; + my = —ibg leads to
SCQCD _, 7SQED
ZS4><51 ZSZ><51

— to be reinterpreted as degenerations of g-correlators.



Liouville CFT correlators can be defined and computed in a purely
axiomatic fashion, without using the Lagrangian.
conformal blocks are determined by the Virasoro algebra

3-point functions can be obtained using degenerate reps of the
Virasoro algebra + crossing symmetry=bootstrap approach

[Belavin-Polyakov-Zamolodchikov],[Teschner]

We define and compute g-deformed Liouville correlators in a purely
axiomatic fashion, without knowing the Lagrangian:
chiral blocks are determined by the Vir,, algebra
we determine 3-point function using degenerate reps of the Virg
algebra + crossing symmetry+gluing prescription (inspired by gauge
theory)= g-deformed bootstrap approach



Consider a 4-point correlator with a degenerate insertion

(Vaa (00) Vs (r) Ve, (2, 2) Ve (0)) ~ G(2,2)

Correlators with degenerate primaries (singular states in the Verma
module) satisfy difference equations. For the lowest degenerate we find:

[Awata-Kubo-Morita-Odake-Shiraishi],[Awata-Yamada], [Schiappa-Wyllard]
D(A,B;C;q,2)G(z,z) =0, D(A~,B; 6;5];2)G(z,2):0,
where D(A, B; C; g; z) is the g-hypergeometric operator.

—G(z,Z) is a bilinear combination of solutions



0(q°C~1z71; q)
1) = ,01(A,B; Ciz), I =
' ( : 2 0(aC 1 q)0(az i q)

For g — 1 becomes the undeformed s-channel basis.

s-channel correlator:

(Vi (00) Voo (1) Vo (2) Ve, (0)) ~ 3 1O K1)
ij=1
2 o o,
_ Z K,',S) l,‘(S) _ Z :z 3
i—1 * i '
a, ﬁin Oy

KIS-S) is diagonal with elements related to 3-point functions:

s s ) ) b
K = Clos, a3, 67) C(Q—B" . ~bo/2,00), B = nt,

2
— we will need to prescribe the gluing H( <)

*

201(gACT 1, gBC ™ ¢°C T 2)

i=12

)



6(qA~1z71; q) _ _ _
1) = ®1(A, gAC™ Y gAB ™ %2 71),
U G q)(ge L g) 2T ¢ 7=
6(gB~1z71; q) _ _ _
K = ®1(B,qBC 1 gBA™ %z
(e TP e KA 9 7=

For g — 1 limit becomes the undeformed u-channel basis.

u-channel correlator:

K,S-”) is diagonal with elements related to 3-point functions

u u u u b
K = Clar.03,6(") C(Qu=5[", ~bo/2.04) . ") = 7,

i=1,2

)



oy 3 A, 3
impose crossing symmetry ! ‘ "
I //
o I A a;, — a g %
2 2 2 5
(2 0]+ 212 = s 0]+ [
analytic continuation I ZJ 1 Mj J , ’.(5) — 25:1 /\;]l_j/"j(U) yields:

2 .
[Zk,/:1 K/E/S) MMy = KI.J(.“)]

Now we need an ansatz for the gluing rule:

S® gluing rule — 3-point function Cs(ay, o, a3)
5% x S! gluing rule — 3-point function Cig(ay, a2, a3)



S* x S! gluing rule — id-correlators:

3

1 TA(2c;)
C,d((){3,0[2,0/1) T’B(204T _ QO H 'T\/j 20[7‘ — 20(,')

where 2a1 = a1 +az + a3, Qo = by + 1/bg, by is the S* squashing
parameter and §3 is the S radius.
S5 gluing rule — S-correlators:

3

Cs(asz,an,a1) = H 53(204)
S\es, &2, M 207— S3(2ar — 2a)

where E = w1 + ws + w3 and wy, wo,ws are the S° squashing
parameters.

TA(X) o 10_0[ sinh [g (X+n1b0+ Zf)} sinh {g (—X+(n1 )by + %)}

ny,np=0

S3(X) H (winy +wonp +w3ns + X) (win + wony + w3nz + E — X)

n1,n2,n3=0



With a suitable dictionary (akin to the AGT dictionary) we can
map g-correlators to 5d partition functions.

Examples:

5d SQCD, SU(2), N = 4 theory < 4-point correlator

Z_;S4C§<C5D1 = <Va1 Voez Vag Va4>id

Z32YP = (Vay Vi, Vs Vay)s
5d N = 1* SU(2) theory < 1-point torus correlator

Z458 = (V)

ZS./\g.:l* = <VO£1>5



The factorisation of 5d partition functions in terms of 5d holomorphic
blocks B°¢ and their identification with chiral Virg: blocks, suggest to
map 5d partition functions to g-deformed Liouville correlators.

We defined g-deformed Liouville correlators in terms of Virg: blocks and
3-point functions and showed that indeed they can be mapped to 5d
partition functions.

—We need to investigate the full duality group of g-deformed correlators
(what is the g-deformation of the Moore-Seiberg groupoid?)

So far we know that degenerate g-correlators are crossing symmetry
invariant (we imposed this in the bootstrap).

—What is the 5d gauge theory interpretation of g-correlators dualities?

—Can we define Verlinde-loop operators in the g-deformed case? What is
their gauge theory dual?



Our approach so far has been purely axiomatic/algebraic. To construct
g-correlators we only used representations of Virg: and imposed
associativity of the operator algebra (crossing symmetry).

It'd be interesting to have a more geometric/semiclassical description of
the these theories.

In Liouville theory an interesting object which bridges between the
axiomatic and the semiclassical approach is the reflection coefficient.



exact reflection coefficient from DOZZ 3-point function:

L C(Q—anan0s)  TQIPRIQ2IP/b)
o C(an, a2, 03) [(—2iPbo)l (—2iP/by)’ P =i(a—Qo/2)

semiclassical (by — 0) reflection coefficient from mini-superspace
(=03, + PP )V = EV
with solution
b ~ 2P0 | R(P)e‘zi%l),

yielding
r(2iP/bo)
I(—2iP/bo)

— captures only half of the exact result.

R(P) ~



1d Schrodinger problems can be mapped to free motion in curved spaces.
The radial part of Laplace-Beltrami operator on the Lobachevsky space
~ SL(2,C)/SU(2) reduces to the Liouville wall problem with asymptotics

Ua(x) ~ c(N)e™ 4+ c(=\)e™™  as  x = —o0

The coefficients c(4\) are the Harish-Chandra c-functions:

! c(=A) [(2i))
T (1420 (N T(=2in)

c()

with the identification of the spectral parameter A = P /by reproduces
the semiclassical Liouville result.

c-functions of any classical symmetric space, can be expressed as

1
‘=1l Fray

aEAT

where | = 1,1/2 for finite dimensional or affine Lie algebras.



[Gerasimov et al.] observed that the exact Liouville reflection coefficient can
be obtained considering the affine version of the group

s1(2) — sl(2).
Adding the affine root aq to the positive root a; and choosing
A(awg+ar1)=7, A-ar=2iP/bp—1/2, XN-ag=7—2iP/by+1/2,
the c-function becomes

c(P)™t =T (2iP/bo) [ [ T(2iP/bo + n7)T(1 — 2iP/bo + n7)[(1/2 + n7) ,
yielding

c(=P) _ T(2iP/by) T(2iP/bo7)

c(P) [(—2iP/b) T(—2iP/bo7)’

with 7 = 1/b3 matches the exact Liouville result R;.

Message: affinisation<+ effective 2nd quantisation.



From 3-point functions we find the exact reflection coefficient:

Cia(Qo — a, a2, 1) 4 (2iPbo) T+ (2iP/bo)

R,‘ = ~ A . )
d Cia(v, a2, 1) [q (—2iPbo) T (—2iP/by)

with g = e/, ¢ = e and To(x) = (£2=(1 - q)1 .

Analogy with semiclassical Liouville suggests to take

cN) =TI+ X-a)?t,
this is the c-function of the quantum Lobachevsky space where
5[(2) — Uq(5[(2)) [Olshanetsky-Rogov].

Taking the affine version and defining ¢ = t7, 7 = 1/b3, we recover the
exact reflection coefficient:

(t2P/bo; g, t)(t=2P/b: g, t)  c(—P) [ (2iPbo) T+ (2iP/bo)

c(P) ~ (t1-2P7k0; 1) " c(P) " Tq(—2iPbo)T¢(—2iP/by)’




From 3-point functions we find the exact reflection coefficient:

R _ Cs(E— a,ag,al) _ 53(—2//3‘03)
s Cs(av, o2, 1) S3(2iP|3)

P=ia—iE/2.

We take a c-function given in terms of the double-Gamma function:
C(P) = r2(2iP/,{|el7e2)713 el+e2 - 1

This c-function have been argued to arise in generalised symmetric
spaces and to be part of a hierarchy of integrable systems, whose
S-matrix building blocks are ', functions [Freund-Zabrodin].

Finally the affinisation prescription yields the exact reflection coefficient:

c(P)™t = []ra2iP/s+ nrler, e)T2(1 = 2iP/k + (n+ 1)rler, &)
n>0
[172(1/2 + n7ler, &) = S3(2iPla)
n>1

with w = k(ey, e, 7).



XYZ

T, (iu+rk)T, (iu+rk+r+1)
J(u)=1 = T
T, (iu+rk+112)T (iu+rk+r+1/2)

g=e . r
q—»l,rzcoy

_—imt

T2y
konst,r—mo

XXZ disordered XXZ anti-ferro
J(u)~T, J(u)~Fq
lafﬁm‘saﬁon i affinisation
RS(Q]): CS(E_(ll.al.(xj) er(o(l): Cu(Qo_(*l.(*z,“s)

Cs‘(ul.qz,qz) Cm’(al,alal)

— The appearance of the XXZ spin-chain is not surprising: SUSY vacua
of 3d V' = 2 theories can be mapped to eigenstates of spin-chain
Hamiltonians [Nekrasov-Shatashivili], 3d blocks satisfy the Baxter equation
for the XXZ spin chain [Gadde-Gukov-Putrov].



THANK YOU!



