MQXF Design Overview

P. Ferracin

on behalf of the MQXF team

HL-LHC/LARP International Review of the MQXF Design December 10-12, 2014 CERN

Outline

- Overview of MQXF project and design
- Strand and insulated cable
- Coil design, magnetic analysis, magnet parameters
- Support structure and mechanical analysis
- Quench protection

Overview of MQXF project

- Target: 140 T/m in 150 mm coil aperture
- To be installed in 2023 (LS3)
- Q1/Q3 (by US-HiLumi Project)
 - 2 magnets with 4.0 m of magnetic length within 1 cold mass
- Q2 (by CERN)
 - 1 magnet of 6.8 m within 1 cold mass, including MCBX (1.2 m)
- Different lengths, same design
 Identical short model magnets

Integrated short model program Exchangeable coils (almost identical)

Integrated short model program 2 identical support structures

- One at CERN, one at LBNL
- Same CAD model and same fabrication companies

Overview of MQXF design

- OD: 630 m
- Stainless steel shell
 - 8 mm for LHe containment
- Aluminum shell
 - 29 mm thick
- Iron yoke
 - Gaps open
 - 4-fold symmetry
- Iron master plates
 - Bladder and keys
- Iron pad
- Aluminum axial rods
- Aluminum bolted collars
- G10 pole key
- Ti alloy poles

From LARP HQ to MQXF Strand, cable and coil

- The aperture/cable width is approximately maintained
 - Aperture from 120 mm to 150 mm
 - Cable from 15 to 18 mm width
 - Similar stress with +30% forces
- Same coil lay-out
 - 4-blocks, 2-layer with same angle
 - Optimized stress distribution
- Strand increased from 0.778 mm to 0.85 mm
 - Same filament size from 108/127 to 132/169
 - Maximum # of strands: 40
- Lower J_{overall} from quench protection
 - from 580 to 480 A/mm²

From LARP HQ to MQXF Magnet design

- Same structure concept
 - Pre-load capabilities of HQ design qualified and successfully tested
- Larger OD: from 570 to 630 mm
- Additional accelerator features
 - Larger pole key for cooling holes
 - Cooling channels
 - Slots for assembly/alignment
 - LHe vessel and welding blocks and slots

LHC low- β quadrupole support structures

- Cold mass OD from 490/420 in MQXA-B to 630 mm in MQXF
 - More than double the aperture
 - ~4 times the e.m. forces in straight section
 - ~6 times the e.m. forces in the ends

Outline

- Overview of MQXF project and design
- Strand and insulated cable
- Coil design, magnetic analysis, magnet parameters
- Support structure and mechanical analysis
- Quench protection

MQXF strand (from CERN technical specification document)

- 0.85 mm strand
- Filament size <50 μm
 - OST 132/169: 48-50 μm
 - Bruker PIT 192: 42 μm
- Cu/Sc: 1.2 ± 0.1 → 55% Cu
- Critical current at 4.2 K and 15 T
 361 A at 15 T

Superconductor properties Virgin strand, no self field correction

Ca1*	41.24	Т
Ca2* = 1034 x Ca1*	42642	Т
eps_0,a	0.250%	
Bc2m*(0)	31.50	Т
Tcm*	15.34	K
C*	1541	ТА
р	0.5	
q	2	
Strain=	-0.20%	

Godeke's parameterization

MQXF baseline cable

- 40-strand cable
- Mid thickness after cabling
 1.525 +/- 0.010 mm
- Width after cabling
 18.150 +/- 0.050 mm
- Keystone angle
 - 0.55 +/- 0.10 deg.
- Pitch length
 - 109 mm
- SS core 12 mm x 25 μ m thick

- Assumed expansion during reaction
 - 4.5% in thickness: ~70 μm, same keystone angle
 - -2% in width: ~360 μ m
- Mid-thickness after reaction
 - 1.594 mm
- Width after reaction
 - 18.513 mm

Cable insulation

- AGY S2-glass fibers 66 tex with 933 silane sizing
- 32 (CERN, CGP) or 48 (LARP, NEW) coils (bobbins)
 - Variables: # of yarn per coil and of picks/inch
- Target: \leq 150 µm per side (145 ±5 µm) at 5 MPa, average 3 cycles

Sample	Ins. Cable thickness (mm)	Bare cable thick/ (mm)	Insulation thick. (mm)
001_1	1.822	1.530	146
001_2	1.823	1.531	146
001_3	1.821	1.530	146
101_1	1.817	1.531	143
101_3	1.816	1.531	143
102_1	1.821	1.531	145
102_2	1.819	1.531	144
102_3	1.823	1.531	146

Outline

- Overview of MQXF project and design
- Strand and insulated cable
- Coil design, magnetic analysis, magnet parameters
- Support structure and mechanical analysis
- Quench protection

Coil design and magnetic analysis

See talk from S. Izquierdo Bermudez

- Two-layer four-block design
 similar to HQ
- Criteria for the selection
 - Maximize gradient and # of turns
 - Distribute e.m. forces and minimize stress
- Result: 22+28 = 50 turns
- All harmonics below 1 units at R_{ref} = 50 mm
- Winding pole impregnated with the coil
- Cooling holes in the pole
 - 8 mm Ø every 50 mm
- Splice extension 140 mm long

Coil insulation

See talk from M. Yu

- 2 x 0.175 mm S2 glass around winding pole
- 0.125 mm S2 glass sleeve around wedges
- 0.5 mm S2 glass inter-layer insulation
- 0.125 S2 glass + 0.125 polymide mid-plan shim (per quadrant)
- 250 μm coating on end parts in red
- 175 μm S2 glass between end parts and the cable

Coil design and magnetic analysis

See talk from S. Izquierdo Bermudez

21 88

43 75

65.62

87 5

109 38

131.25

153.12

175

- 6 blocks in the ends
 - Increase from 4 blocks in HQ
 - Minimized integrated harmonics in the RE
 - 1% lower peak field in the ends wrt straight section
 - Iron pad removed from the ends

Magnet parameters

• Inductance: 8.2 mH/m

Magnetic field (T)

Outline

- Overview of MQXF project and design
- Strand and insulated cable
- Coil design, magnetic analysis, magnet parameters
- Support structure and mechanical analysis
- Quench protection

Coil and G10 pole key

See talk from R. Van Weelderen

Cooling holes in the pole
 - 8 mm Ø every 50 mm

Aluminum bolted collars

• 50 mm thick laminations

See talk from P. Moyret on part fabrication

- Radial contact with coil and azimuthal contact with pole key (for alignment)
- No coil pre-load function
- 1.2 mm G10 shim used it to adjust radial contact between coil and collar

Ground insulation

- Minimum 2 layers everywhere
- Minimum creep path
 7 mm
- Non-metallic pole key
- Seams staggered
- All pieces full length
- 1 layers on coil
- 2 layers on collars

Iron and stainless steel bolted pads Coil-pack sub-assembly

- 50 mm thick laminations
- Alignment with respect to collars
- Stainless steel laminations in the ends
- No coil pre-load function

Iron masters and alignment-loading keys

See talk from J.C. Perez and D. Cheng

- Slots for
 - Bladders
 - Loading keys
 - Alignment keys
- Flat surface

 Nested into features in the load pads (and yokes)

Yoke-shell sub-assembly

- 4 stacks of lamination assembled with ties rods
- Shell pre-load with temporary keys
- Tack-welding blocks bolted to the yoke
- Segmented shell with cut-outs for cold-mass assembly

Coil-pack sub-assembly in shell-yoke-subassembly and pre-loading

Aluminium axial rod insertion and assembly of end-plate

Backing-strip

See talk from H. Prin

Welded LHe vessel (stainless steel shell)

See talk from H. Prin

Pre-loading sequence

See talk from M. Juchno

- Target:
 - Coil pre-load = e.m. force
- Room temperature
 - 40 MPa bladder pressure
 - Overshoot to insert shim
 - ~30% of force on collars
 - Marginal impact of vessel
 - Coil peak stress <100 MPa
- 1.9 K
 - 0.4 mm coil radial displ.
 - Minimum force on collars
 - Vessel still in contact
 - Coil peak stress ~175 MPa

Excitation to 140 T/m

See talk from M. Juchno

- Coil under pressure
 - Capability to pre-load to 155 T/m
- Coil peak stress ~140 MPa
- Structure rigidity
 - ~0.045 mm on the mid-plane
 - No impact on field quality

Loading of 150 mm mock-up

See talk from J.C. Perez

- Shell target pre-load for 140 T/m passed
 All bladders pressurized at the same time
- ~10 MPa variation among shell gauges

Axial loading

- Same loading principle as azimuthal loading
 - Coil pre-load = e.m. force
 - From "open gap yoke" to "free aluminum rods"
 - Pre-load to maintain pressure coil – end-parts
- Rigidity
 - $-\,{}^{\sim}100~\mu m$ rod elongation
 - In LQ, +10 microstrain \rightarrow

- 33 micron over 3.3 m length

Shell segmentation and LHe vessel (I)

See talk from M. Juchno

- In case of full length aluminum shell
 - High ϵ_{z} and σ_{z} due to friction and high thermal contraction
 - Risk of ratcheting
 - Variation of shell axial $\mathbf{\varepsilon}_{\mathbf{z}}$ due to friction
 - Large coil stress σ_9 variation
- Aluminum shell in 0.755 m segments
 - LQ/HQ shell axial stress levels
 - Coil azimuthal stress variation ± 10 MPa
- Optimization of shell segments for long model in progress

Shell segmentation and LHe vessel (II)

See talk from H. Prin

- Shell cut-outs to align magnet under press during tack welding process
 - Optimization of welding blocks and backing strips in progress
- Stainless steel shell welded with 50-100 MPa tension
 - Still in contact after cool-down (~20 MPa)

$$\sigma_{\theta} = \frac{E}{\left(1 - v^{2}\right)} \left(\varepsilon_{\theta} + v\varepsilon_{z}\right)$$

Outline

- Overview of MQXF project and design
- Strand and insulated cable
- Coil design, magnetic analysis, magnet parameters
- Support structure and mechanical analysis
- Quench protection

Quench protection

- Inner and outer layer trace impregnated with the coil
- Cu plating (~10 μm) on 25 mm ss
- Perforated 50 µm polymide layer and minimum covered area
 - Different designs to be tested
- Hot spot T: ~290 K

18.3 mm 25 mm

- 330 K with only out layer heaters
- CLIQ under study and test for redundancy

Appendix

MQXF baseline cable

- 40-strand cable
- Mid thickness after cabling
 - 1.525 +/- 0.010 mm
 - Thin/thick edge: 1.438 /1.612 mm
- Width after cabling
 - 18.150 +/- 0.050 mm
- Keystone angle
 - 0.55 +/- 0.10 deg.
- Pitch length
 - 109 mm
- SS core 12 mm wide and 25 μ m thick

- Assumed expansion during reaction
 - 4.5% in thickness: ~70 μm, same keystone angle
 - 2% in width: ~360 μm
- Mid thickness after reaction
 - 1.594 mm
 - Thin/thick edge: 1.505/1.682 mm
- Width after reaction

Dimensional changes during heat treatment

- Unconfined cables and strands (RRP) at LBNL
 - axial contraction: 0.1 to 0.3 %
 - thickness increase: 1.5 to 4 %
 - width increase: 1.5 to 2 %
- Data on PIT strands and cables (FRESCA2)
 - larger axial contraction, comparable cross-section increase
- In HQ01, only 1-2% space for expansion left in design
 - Clear signs of over compressed and degraded coils
- So in HQ02, reduction of strand diameter (0.8 \rightarrow 0.778 mm)
 - Thickness: 4.5%, from 29 μm (HQ01) to 65 μm (HQ02)
 - Width: 2%
 - Very good HQ02 quench performance
- Same assumptions used for MQXF
 - No signs of over-compression in first coils
 - Work in progress: Ten stack measurements at CERN and MQXF LARP coil 1 crosssection measurements at LBNL

Tooling design

- Cable dimension after reaction and 150 μm thick insulation
- Coil cured in larger cavity
- Coil closed in reaction fixture in larger cavity
- Coil after reaction and during impregnation in nominal cavity
 - Theoretical pressure ~5 MPa

MQXF length

- From magnetic length to end of magnet (end-plate + connection box)
 - Connection side: 478 mm
 - Non-connection side: 214 mm

Q1

- Connection side: from magnetic length to end of end-cover
 - **301.5+238.5=540 mm** (**478 mm** magnetic to end of magnet in MQXF)
- Non-connection side: from magnetic length to Q1a-Q1b "middle point"
 - 186.5+63.5=250 mm (214 mm magnetic to end of magnet in MQXF)

Q2

- Connection side: from magnetic length to end of end-cover
 - 325+234=559 mm (478 mm magnetic to end of magnet in MQXF)
- Non-connection side: from magnetic length to Q1a-Q1b "middle point"
 - 172+78=250 mm (214 mm magnetic to end of magnet in MQXF)

Minimum distance between Q1a and Q1b magnetic lengths

- From magnetic length to end of magnet (end-plate + connection box)
 - Non-connection side: 214 mm
 - Minimum distance: 214+214+22 (?) = ~ 450 mm

CERN connection box

