MQXF support structure An extension of LARP experience

Helene Felice

MQXF Design Review December 10th to 12th , 2014 CERN

Snapshot of LARP support structure experience

High Luminosity LHC U.S. LARP

Step-by-step technology demonstration

Time

Exploration of the stress limits

Magnet Parameters Overview

		TQ		LQ		HQ		MQXF
		Design	TQS03	Design	LQS03	Design	HQ02b	Design
Aperture	mm	90	90	90	90	120	120	150
Gradient	T/m	200	238	200	210	170	195	140
Current	kA	11	13.5	11	11.8	14.6	17.3	17.5
Peak field	Т	10.1	12.2	10.1	10.6	11.5	13.5	12.1
Fx	MN/m	1.4	2	1.4	1.5	1.9	2.7	2.6
Fy	MN/m	-1.45	-2.1	-1.45	-1.6	-2.7	-3.8	-3.9

• Performance of actual magnets consistently above design targets

Design force level in MQXF of the same order than forces reached in HQ

See Gianluca Sabbi's talk

Outline

- Shell-based support structure concept
- Exploring the limits
 - TQ high stress
- Step-by-step technology demonstration
 - Design optimization
 - Length
- MQXF support structure
 - Main features

Shell-based support structure Motivation and concept

Shell-based support structure Supporting tools

 Numerical tools: integrated magnetic, mechanical analysis and CAD applied to all LARP magnets and to MQXF

Instrumentation: strain gauges mounted on coil pole pieces, shell and axial rods

- Same analysis tools used for all LARP magnets and for MQXF
- Assembly and preload target based on analysis
- Control of the pre-stress level
- Constant feedback between SG measurements and model

Shell-based support structure Concept

U.S. LARP

Axial support

• Provided by axial (aluminum or stainless) rods pre-tensioned at room temperature using a hydraulic piston and rod shrinkage during cool-down

Preloading supported by analysis and monitored with strain gauges

Shell based structure allows adjustable / tunable azimuthal and axial preload

Shell-based support structure Key features

- Gradual application of the preload:
 - Axially and Azimuthally
- Tunable preload
 - During assembly
 - In between tests
- Reversible assembly process
 - Allowing fast replacement of a defective coil if needed
- Correlation between models and strain gauges
 measurements

Outline

- Shell-based support structure concept
- Exploring the limits
 - TQ high stress
- Step-by-step technology demonstration
 - Design optimization
 - Length
- MQXF support structure
 - Main features

Stress limits: defining an acceptable range TQS03 program

Loading

• OST RRP 108/127 strand	TQS03 parameters		keys and shims Aluminum shell	
• 54 % Cu fraction	4.3 K	1.9 K	layer 1 and 2	
 Jc (12T, 4.3 K) 2770 A/mm² 27 strands cable 	I _{ss} (kA)	13.2	14.5	
• 1.26 mm mid-thickness bare	B _{peak ss} (T)	12	13	Iron pad Bladder location
• 0.125 mm insulation	G _{ss} (T/m)	234	254	
				4 tests: TQS03 a, b, c and d
	E F Alumin	ndplate	ods	 performed with variable pre-stress TQS03a: 120 MPa* TQS03b: 160 MPa* TQS03c : 200 MPa* TQS03d: 120 MPa * * Average value at pole turn by increment of load shims supported by ANSYS analysis

Iron yoke

Azimuthal stress from 3D analysis

Azimuthal Strain Comparison with Strain Gauges measurements

Azimuthal Stress Comparison with Strain Gauges measurements

TQS03 series Estimated stress overview

	ANSYS peak stress at cold	Estimated peak stress at cold based on pole SG meas.	ANSYS peak stress with Lorentz forces	Estimated peak stress with Lorentz forces
TQS03a	-200	-180	-220	-200
TQS03b	-245	-220	-260	-240
TQS03c	-270	-250	-290	-270
TQS03d	-200	-180	-220	-200
MQXF	-176	NA	-142	NA

Training performance

Only 5 % degradation from TQS03a to TQS03c

• TQS03d did not recover => Permanent degradation

TQS03 series summary

	Estimated peak stress at cold based on SG meas. (MPa)	Estimated peak stress with Lorentz forces (MPa)	Fraction of Iss reached (%)	
TQS03a	-180	-200	93	
TQS03b	-220	-240	91	
TQS03c	-250	-270	88	
TQS03d	-180	-200	88	
MQXF	-176 (design)	-142 (design)	NA	

• TQS03: performance above 90% reached with 220-240 MPa of estimated compressive azimuthal stress in the high field region

Experience of tension in the pole

In TQS03a, some tension at the pole did not impact the magnet performance.

Outline

- Shell-based support structure concept
- Exploring the limits
 - TQ high stress
- Step-by-step technology demonstration
 - Design optimization
 - Length
- MQXF support structure
 - Main features

From TQ to HQ Design optimization

From TQ to HQ Design optimization

Azimuthal stress σ_{θ} : design values

Design optimization led to more homogenous stress distribution in the coil cross-section

Helene Felice

HQ the closest relative to MQXF Support structure overview

Coil to pad alignment features introducing a new pre-stress regime

Alignment features

- From pad to shell: demonstrated in LQ
- From coil to pad: new bolted collar features
 - Alignment purpose only
 - No preload applied by the collar
 - Interception of part of the preload

Stress distribution in HQ02b Straight section

Focus on HQ02 with 2nd generation coils

HQ02: End region

HQ02b: strain gauges data

Outline

- Shell-based support structure concept
- Exploring the limits
 - TQ high stress
- Step-by-step technology demonstration

 Design Optimization
 - Length
- MQXF support structure

– Main features

1st long shell based structure: the Long Racetrack LR

- LRS01: full length shell (3.6 m)
- Friction limits the shell contractions
 - Central part locked
- Strain at 4.5 K consistent with 0.2 friction model results
- Slippage occurred during the test

From full length shell to segmented

Shell segmentation demonstrated in LR to ensure reliable azimuthal preload

Length demonstration on a cos20 magnet: the Long Quad LQ

- 90 mm aperture
- TQ coil scale-up
- Magnet/coil length: 3.7/3.4 m

	LQS paran	01-2 neters	LQS03 parameters		
	4.5 K	1.9 К	4.5 K	1.9 К	
I _{ss} (kA)	13.8	15.4	12.9	14.4	
B _{peak ss} (T)	12.3	13.6	11.5	12.8	
G _{ss} (T/m)	240	267	227	250	

- Based on LR results, LQ shell was segmented
- 4 complete assemblies: LQS01a/b and LQS02 and 3

LQ Shell Axial strain

- LQ: Axial strain value consistent with LRS02 shell strain values
- No slippage monitored during test
- LQ, HQ and MQXF have consistent shell axial strain values

LQ: Axial motion during excitation

LQ: assembly optimization

Summary

- Stress limits were explored with the TQ program and showed that stresses as high as 240 MPa in the winding were compatible with performance above 90%
- From SQ to HQ, LARP demonstrated that the shell-based support structure:
 - Can be used in long magnets with a segmented shell
 - Can provide alignment between coil and structure
 - Can accommodate oversized coils
- Same assumptions applied to LARP magnets and MQXF analysis
- HQ experienced stresses beyond the stress level of MQXF
- The support structure features demonstrated by LARP are now implemented in the MQXF design

Outline

- Shell-based support structure concept
- Exploring the limits
 - TQ high stress
- Step-by-step technology demonstration
 - Alignment features
 - Length
- MQXF support structure
 - Main features

From LARP to MQXF

MQXF support structure overview

- Alignment components similar to HQ
- Similar axial support
- Segmented shell
- Level of stress below past LARP experience

 MQXF support structure includes features for cooling and cold mass assembly

Helene Felice

APPENDIX

Stress limits – TQS03 program Predicted Azimuthal stress

From TQ to HQ Design optimization

TQ

40 20

-20 -40 -60 -80 -100 -120

-140

-160

400

LQ pole turn 4.2K

LQ pole turn 13.8 kA

Azimuthal stress (MPa)

- Pad extremities in stainless steel to lower the peak field in the end region
- No alignment features

- Optimization of the design
 - load key positon
 - Pad extremity in stainless steel
- Implementation of alignment features from pad to shell:
 - Key, masters and pins

800

Length (mm)

1200

1600

LQ series preload overview

Mechanical Analysis Typical Stress distribution

HQ02b – radial stress (MPa)

HQ02b – Shear stresses (MPa)

HQ02b – axial stress (MPa)

