

Production of SQXF Magnet Components:

Materials Engineering

Return on experience

P.MOYRET EN-MME-FS

Pierre Moyret

Introduction

Design Optimization Production Processes Results

Cost Analysis

Production option for 10 MQXF

SQXF magnet 150 mm

INTRODUCTION

 Request from TE-MSC (received in March 2014) to supply 2 SQXF magnets (length 1.5 m) plus 1 magnet mock-up of 150 mm.
 Agreed Date of delivery: End of October 2014 (7 months available for production)

Detail initial cross section SQXF

DESIGN OPTIMIZATION

Proposal to replace sharp edges with radii for two main reasons...
Remove short slotted hole

PRODUCTION PROCESS

✓ Yoke and Load pad:

- ✓ Detail of the Yoke machining procedure:
- 1. Cutting of blocks (sawing) from ARMCO sheet th. 55 mm.
- 2. Machining using dovetail joints for clamping on both extremities.
- 3. Milling down to 50mm, drilling holes and rough machining of the lower profile.
- 4. Rough machining of the upper radius.
- 5. Assembly.
- 6. Final machining of the upper radius.
- 7. Final machining of the lower profile using the side notches for precise positioning.

Yoke stack 1.5m

Load-pad stack 1.5m

Yoke: 3D model

PRODUCTION PROCESS

✓ Collar produced by EDM machining:

- 1. Cut the Al6082 T6 plate 160x400 mm, thickness 55 mm,
- 2. Milling both surfaces to thickness 50.3 mm
- 3. Drilling the holes for the wire erosion
- 4. Grinding to the final thickness
- 5. EDM wire cutting. Single step is enough to reach the required tolerance
- 6. Milling the radial holes

Collar: 3D model

RESULTS AND METROLOGY MEASUREMENTS

Yoke:	RAPPORT DE CONTROLE Kon da plan de contrête: EDMS 1413192 - LHCMQXPM0002 - B - SQXP YOKE ASSEMELY Nom de plexi: SQXP YOKE ASSEMELY N' de plan LHCMQXPM002 Centé PEREZ Juan cartos N' de plexi: PEREZ Juan cartos N' de plexi: 1413192 N' de plexi: 1413192 N' de plexi: 1413192 Methods: 20°C ±1°C	Carlyse Carl Zeis 3.0 5.0 Windo Pake Matty 1 Matty Pressou 1.6 or Pake EDIS 11920 8.5 or York ASSEME -100.0 -50.0 0.0 -100.0 -50.0 0.0	S Deter 14 Ottobre 2014 Commands 'order' Spetimer Master Spetimer Master Defaults de forme Courbe Face Réf A à Y5 1 50 0 Z [mm] + +	Calyso Calyso 5.68 Matt Nonice PAce Matt 1 Matt Ebbs 91192 -Licka2/Matte -200.0 -100.0	Date Commands 14 Optioner 2014 reder * an Operator Service Signature: ASSEMELY Defaults de finme Courbe opposte RélA Y775 0.0 0.0 100.0 Z [mm] +
	Informations relatives au référentiel de mesure	-50.0-		-100.0-	
	Drefe alignment parsart par 5 politis de symbolie Ref. 20	0.0-		0.0-	
	Plan Réf.A Plan Réf.C	100.0-		200.0- X [mm]	Tak Ind Tak Sup Escar Via nomos ¹ 100 Sum
Load pad:	Construction du référentiel de base: - Oteration primère: Par 64.A - Orentario vocania: - Onia al aprement passart par 5 points de symétrie - Origine: X et Y = Interaction de la decite al generent passant par 5 points de symétrie et le plan RéEC Z= Plan RéEA	Transistion Relation Résultat de balancement/t 0.000 0.000 2 0.000 0.001 2 0.000 0.001 Signes Forme Netrief Tal. Inf. 0.019 0.112 300 0.025	Amplification 100 Commentaire	Résultat de balancementX Listen Bodo N 2 0.000 2 0.000 Sigma Forme Momb/ToL.Inf 0.010 0.018 0.170 274 -0.02	2000
		10755	ZETSS Calypso 5.6.08 5 Numéro Pièce Type MMT 1 PRISMO_ULT Nom Pian de Con EDMS.14273	Carl Zeiss No de Plan IRA 46-LHCMQXFM0056-LOADPAD COU	Date 29 Octobre 2014 Commande Service: Opérateur Master Signature:
				1: Défauts de forme sup 1 4100 -2100 100 2000	4.000 60.000 10.000 X

2	Défauts de forme inf 1

No

Désignation

Défauts de forme sup

0.1 mm

Tol. Sup. (mm

0,025

MinInd Ecart Min

97

2659 -0.048

-0,018

120

Tol. Inf. [mm

-0,025

588

2872 -0.025

0.035

0.005

RESULTS AND METROLOGY MEASUREMENTS

Color H

0,019

0,034

390 -0.025

0.025 99 -0.034 331 -0.002

COST ANALYSIS: SQXF

<u>1 SQXF mock-up 150 mm</u> with dummy coil: <u>37 kCHF</u>

2 SQXF lg 1500 mm

✓ Yoke and Load pad (ARMCO):
✓ Production by EDM: (401 kCHF)
✓ Production by milling:
✓ Master, dummy coil and keys by milling:
✓ Collar (Aluminium) by EDM (material included):
✓ Shell (without raw material), 4x 750 mm:
✓ ARMCO material, th 20, 30, 55, 70 mm:

206 kCHF 59 kCHF 31 kCHF 20 kCHF 52 kCHF

SQXF PRODUCTION: OUTCOME

✓ Successful results obtained by machining 1,5m long stacks

✓ Same approach could be extended to an eventual series production

✓ EDM guarantees very precise components but is competitive only for Aluminium.

PRODUCTION OPTION FOR 10 MQXF

✓ Drawings: tolerancing on single component or on assembled stack?

-...Depends on the manufacturing process!

- New design with laminations → <u>Fine blanking</u>
- EDM

12/10/2014

Milling process for 1.5 m stack

PRODUCTION OPTION FOR 10 MQXF

	BASELINE (1.5 m long stacks)			POSSIBLE ALTERNATIVE (Fine blanking)		
COMPONENTS	RAW MATERIAL	PRODUCTION PROCESS	PROS AND CONS	RAW MATERIAL	PRODUCTION PROCESS	PROS AND CONS
YOKE	ARMCO Sheet th. 55 mm Weight: 110 T	Milling 1.5 m long stacks	 Good flatness Very good quality of the assembly Limited tolerance dispersion in the production Standard raw material Expensive w.r.t Fine blanking 	ARMCO Sheet th. 5 mm Weight: 110 T Specific order Specific corrosion protection	Fine blanking	 Cheap process Specific tool to be developed Specific raw material Assembling more difficult Require s close Follow up Development: ~1 year
LOADPAD	ARMCO SHEET th. 55 mm Weight: 50 T	Milling 1.5 m long stacks	0	ARMCO SHEET th. 5 mm Weight: 50 T	Fine blanking	69
COLLAR	Aluminium Al 6082 Sheet th. 55 mm Weight: 8 T	EDM single part	 Good flatness Limited tolerance dispersion in the production Expensive process 	Aluminium Al 6082 Sheet th. 5 mm Weight: 8 T Specific order	Fine blanking	69
MASTER KEY	Bronze Sheet th. 12 mm Weight: 500 Kg	Milling 1.5 m long part	Not expensiveGood flatnessGood geometry	Bronze Sheet th. 12 mm Weight: 500 Kg	Milling 1.5 m long part or Extrusion?	Good flatnessGood geometry
MASTER	ARMCO Sheet th. 20 mm Weight: 26 T	Milling 1.5 m long part	Not expensiveGood flatnessGood geometry	ARMCO Sheet th. 20 mm Weight: 26 T	Milling 1.5 m long part	Not expensiveGood flatnessGood geometry

C. Conta

PRODUCTION OPTION FOR 10 MQXF

	BASELINE (1.5 m long stacks)			POSSIBLE ALTERNATIVE (Fine blanking)		
COMPONENTS	RAW MATERIAL	PRODUCTION PROCESS	COSTS ESTIMATION	RAW MATERIAL	PRODUCTION PROCESS	COSTS ESTIMATION
YOKE	ARMCO Sheet th. 55 mm Weight: 110 T	Milling 1.5 m long stacks	2.2 MCHF	ARMCO Sheet th. 5 mm Weight: 110 T Specific order Specific corrosion protection	Fine blanking	 625 kCHF Material: 350 kCHF Tool: 80 kCHF Parts: 110 kCHF Assembling + bushings: 85 kCHF
LOADPAD	ARMCO SHEET th. 55 mm Weight: 50 T	Milling 1.5 m long stacks	1.75 MCHF	ARMCO SHEET th. 5 mm Weight: 50 T	Fine blanking	385 kCHF
COLLAR	Aluminium Al 6082 Sheet th. 55 mm Weight: 8 T	EDM single part	675 kCHF	Aluminium Al 6082 Sheet th. 5 mm Weight: 8 T Specific order	Fine blanking	225 kCHF
MASTER KEY	Bronze Sheet th. 12 mm Weight: 500 Kg	Milling 1.5 m long part	65 kCHF	Bronze Sheet th. 12 mm Weight: 500 Kg	Milling 1.5 m long part or Extrusion?	65 kCHF
MASTER	ARMCO Sheet th. 20 mm Weight: 26 T	Milling 1.5 m long part	475 kCHF	ARMCO Sheet th. 20 mm Weight: 26 T	Milling 1.5 m long part	475 kCHF

and a

COST ANALYSIS: 10 MQXF

✓ Total cost via machining process:

<u>5165 kCHF</u> (74 kCHF/m) (SQXF~125 kCHF/m)

✓ Total cost via fine blanking process:

1775 kCHF (25 kCHF/m)

Add 10% on the total price for the special lamination milled with radial threads

CONCLUSIONS 1/2

✓ Machining process is a successful approach:

- ✓ "Well known" process.
- ✓ Very good tolerances obtained
- ✓ No step between each part over 1,5m stack assembly.
- \checkmark Limited tolerance dispersion in the production.
- \checkmark Can be easily extended to the series production.
- ✓ Careful attention to be paid to the assembly of the stacks for 7m long magnets

CONCLUSIONS 2/2

✓ Fine blanking is cheaper but...:

 \checkmark Requires design optimisation for final decision

Requires new SQXF prototype to be produced
 Validation of the assembly procedure through a proto produced via EDM?
 Risk of step between each lamination

✓ Specific ARMCO (<u>160T</u>) and Aluminium (<u>8T</u>) sheets necessary
✓ To limit possible perpendicular and flatness defect
✓ Quantity for a special sheet production is quite small!
✓ Possibly regroup orders for other ongoing projects?

New development necessary: 1 ÷ 1.5 year (material + manufacturing)
 Close follow up required (1 person 100%)
 Risk of tolerance dispersion during the production

Thank you for your kind attention

Acknowledgment: A. Dallocchio; F. Bertinelli; D. Perini; P. Ferracin; J-C Perez