New horizons for MCAS: heavier masses and α-particle scattering

Juris P. <u>Svenne</u>, University of Manitoba, and collaborators

The MCAS formulation, brief reviews: K. Amos, *et al*, Nuclear Physics, **A728** (2003) 65; **A912** (2013) 7

Mirror nuclei method

Application of MCAS method to ¹⁶O, using the vibrational model

Final results for Nucleon + ¹⁶O

Nucleon + mass-18 preliminary results

α-particle scattering from even-mass nuclei

MCAS:

Multichannel Algebraic Scattering Formalism

- 1. Discretization of the coupled-channel equations by separable expansion of the channel interactions.
- 2. Pauli principle inclusion by use of orthogonalizing pseudo-potentials.
- 3. Fast, effective search procedure for resonances and bound states.
- 4. Can use rotational or vibrational models for the structure of the target nucleus.

Why mirror nuclei

- Two nuclei are called "mirror nuclei" if one changes into the other by interchanging all protons and neutrons
- Example: ¹⁴C, the isotope of carbon used in carbon dating (half-life ≅ 5700 years) has as its mirror ¹⁴O, a short-lived isotope of oxygen (half life = 70.6 sec)
- Nuclei with a proton excess tend to be less stable than those with a neutron excess
- Current MCAS role: analyze bound and resonant spectra to support and interpret experimental work

Nucleon – ¹⁶O scattering

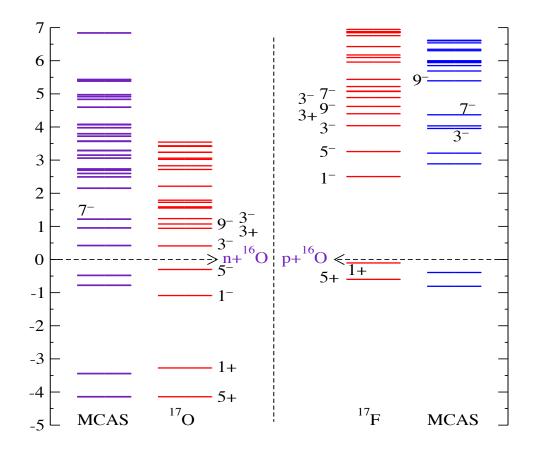
The mirror concept cannot be used to get information on ¹⁶O, since it is its own mirror.

However, energy levels of ${}^{16}O$, as well as those of ${}^{17}O$, the compound system of $n+{}^{16}O$, are well known.

So, we carry out MCAS calculations on n+¹⁶O scattering, to get accurate fits to the spectrum, including resonant states, of ¹⁷O. From these we extract neutron scattering "data".

Using the same parameters, but adding a Coulomb force, we obtain a spectrum for ¹⁷F, as well as proton scattering cross sections. ¹⁷F is the mirror system to ¹⁷O.

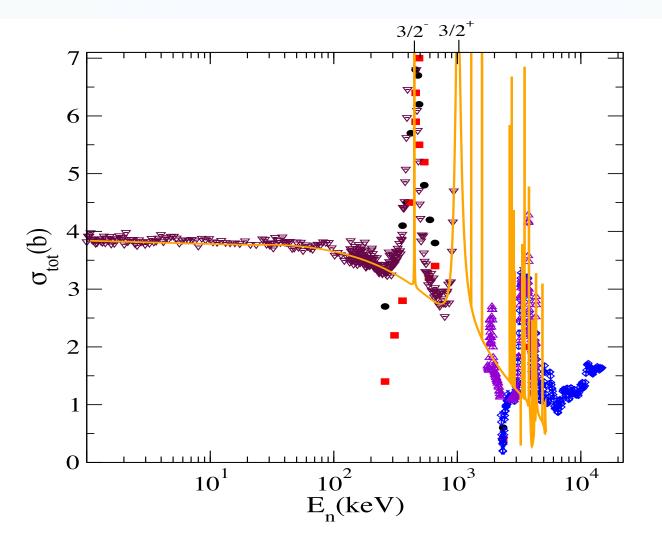
Difficulties with MCAS for ¹⁶O


- ¹⁶O is a doubly-magic nucleus: 8 protons in the $Os_{1/2}$, $Op_{3/2}$ and $Op_{1/2}$ states: filled s and p shells.
- That means ¹⁶O is spherical in its ground state, which causes difficulties for us, since we need the assumption of a deformed target nucleus to which the incoming neutron or proton is coupled. The rotational model does not work well with a spherical ground state.
- So, instead, we use the vibrational model, for the first time with MCAS. Now the deformation is dynamic, and coupling to the projectile works better.
- Results shown here are obtained with the vibrational model. This is a more complicated model, and obtaining good results has required much work.

The parameters

MeV	parity -	parity +	geometry	value	Coulomb
V ₀	- 47.15	- 50.6	R ₀	3.15 fm	2.608 fm
V_{LL}	2.55	0.0	а	0.65 fm	0.513 fm
V_{Ls}	6.9	7.2	β_2	0.21	w= 0.051
V_{ss}	2.5	-2.0	β ₃	0.42	
l ^π n	E _n (MeV)	0s _{1/2}	0p _{3/2}	0p _{1/2}	0d _{5/2}
0+ ₁	0.0	106	106	106	0.0
0+2	6.049	106	106	0.0	0.0
3-1	6.13	10 ⁶	106	5.0	0.0
2+ ₁	6.92	106	106	0.0	0.0
1-1	7.12	106	106	5.0	1.0

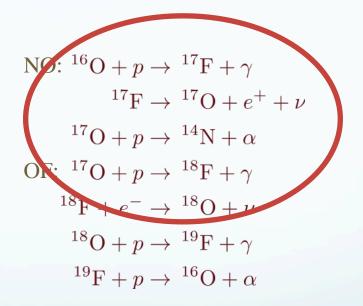
CAP 15/6/2 015


Spectra of ¹⁷O and ¹⁷F

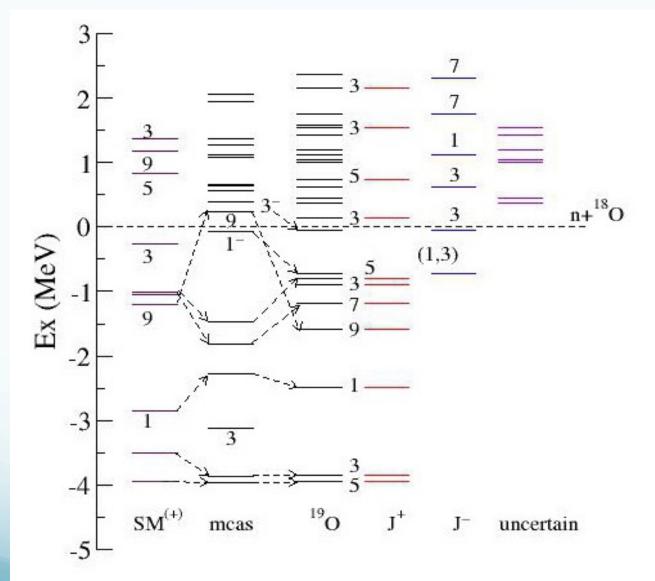
The 10 lowest-E states

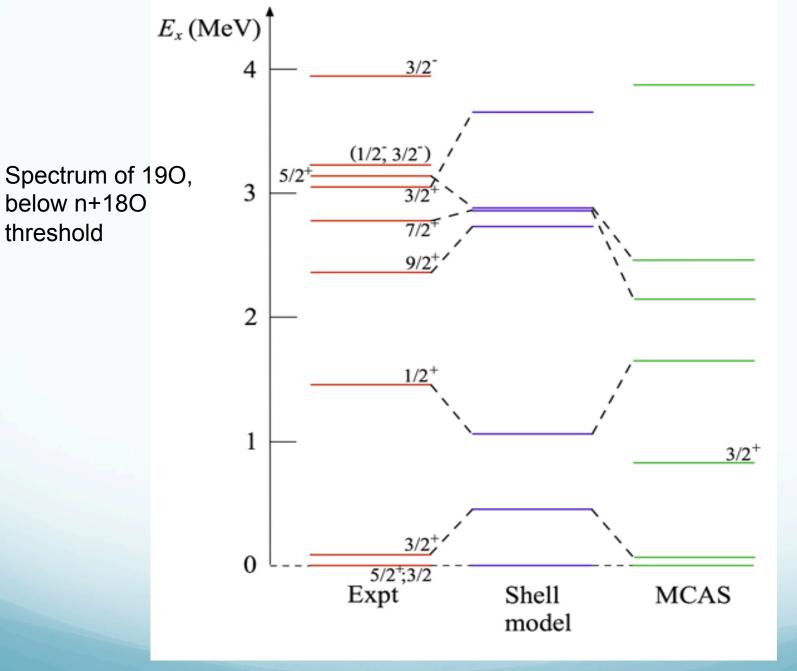
Jπ	¹⁷ 0 _{exp}	Г _{ехр}	E _{mcas}	Γ _{mcas}	¹⁷ F _{exp}	Γ _{exp}	E _{mcas}	Γ _{mcas}
(5/2)+	-4.1436	—	-4.1432	—	-0.6005	—	-0.8079	—
(1/2)+	-3.2729		-3.4426	—	-0.1052		-0.3927	
(1/2)-	-1.0882	—	-0.7781	—	2.5035	19	2.8874	5.58(10)-5
(5/2)-	-0.3008	—	-0.4732	—	3.2565	1.5	2.5644	9.80(10)-6
(3/2)-	0.4102	40	0.42264	1.277	4.0395	225	3.2104	0.00552
(3/2)+	0.9412	96	0.9534	129	4.3995	1.530	3.9557	0.906
(9/2)-	1.0722	< 0.1	2.1528	1.08(10)-7	4.6195	-	5.3930	1.26(10) ^{.9}
(3/2)-	1.2356	28	2.7332	0.2923	4.8875	68	5.826	6.8(10)-5
(7/2)-	1.5537	3.4	1.2185	0.1615	5.0715	40	4.3679	1.95(10) ⁻³
(5/2)-	1.5892	<1	3.1504	0.1982	5.0815	< 0.6	6.3027	6.8(10) ^{.4}

n+¹⁶O total scattering cross section

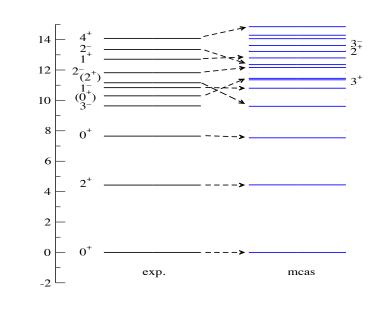


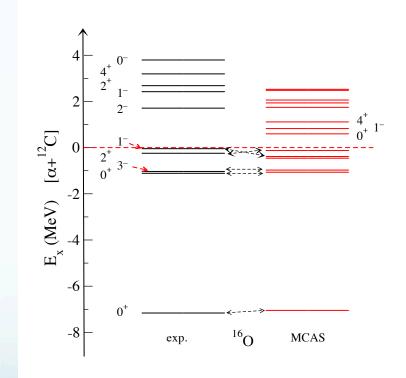
CAP 15/6/2015


Significance of the mass 17-19 systems

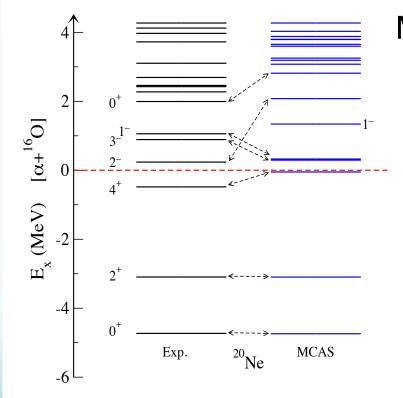

The structures of ¹⁷O and ¹⁷F are critical in the synthesis of elements, beyond carbon, within the stellar environment. The CNO cycle:

CN: ¹²C +
$$p \rightarrow$$
 ¹³N + γ
¹³N \rightarrow ¹³C + $e^+ + \nu$
¹³C + $p \rightarrow$ ¹⁴N + γ
¹⁴N + $p \rightarrow$ ¹⁵O + γ
¹⁵O \rightarrow ¹⁵N + $e^+ + \nu$
¹⁵N + $p \rightarrow$ ¹²C + α
¹⁵N + $p \rightarrow$ ¹⁶O + γ


Mass 18 and 19



Results for α scattering from even-even nuclei.


Here it is assumed an α particle scattering from the unstable ⁸Be nucleus fuses to form ¹²C. The levels shown are the lowest levels in ¹²C.

Alpha + ${}^{12}C \rightarrow {}^{16}O$

Alpha + ${}^{16}O \rightarrow {}^{20}Ne$

Mass-20 . . .

CAP 15/6/2015

... and beyond: mass 22-23

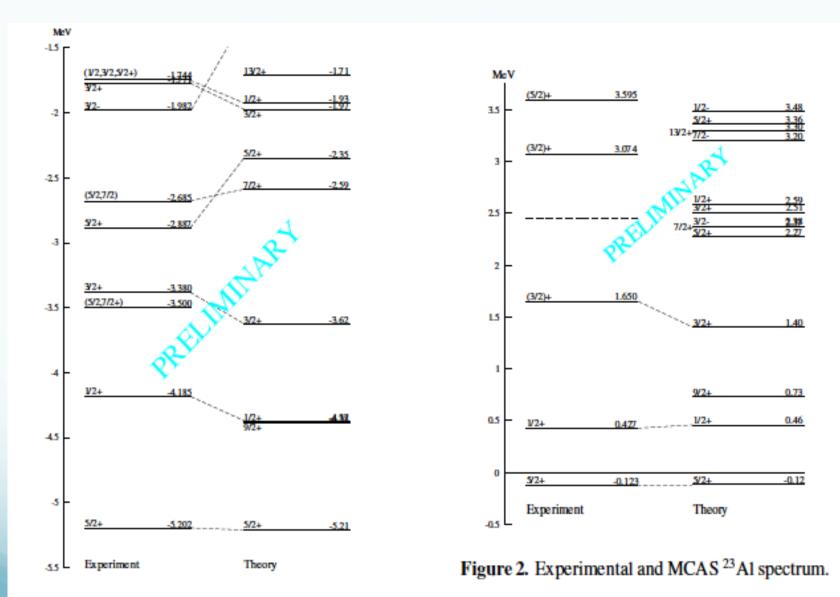
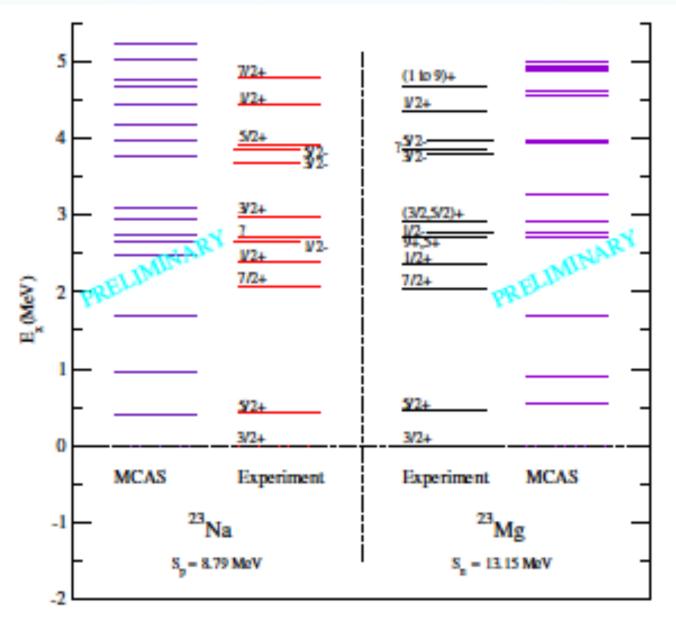



Figure 1. Experimental and MCAS ²³Ne spectrum.

... to mass 23

Concluding remarks

Work on neutron-¹⁶Oxygen scattering is near completion and results are in good agreement with experimental data.

Proton-¹⁶Oxygen scattering calculations are also well advanced, and a spectrum of ¹⁷F was shown.

Current work involves the mass 18-19 system, and alpha-nucleus scattering.

Work on mass-20 and beyond has commenced; preliminary results are promising.

MCAS Collaboration

- Ken Amos and Dirk van der Knijff, School of Physics, University of Melbourne, Victoria 3010, Australia
- Luciano Canton and G. Pisent, Istituto Nazionale di Fisica Nucléare, Sezione di Padova, Padova I-35131, Italy
- Paul R. Fraser, Institute of Theoretical Physics, Curtin University, Bentley, Western Australia 6102, Australia
- Steven Karataglidis, Department of Physics, University of Johannesburg, P.O. Box 524 Auckland Park, 2006, South Africa
- JPS and Damodar K.C., M.Sc. Student, University of Manitoba, Winnipeg, MB

References

- 1. G. Pisent and J.P. Svenne, Phys. Rev. C 51 (1995) 3211
- 2. K. Amos, et al, Nucl. Phys. A728 (2003) 65-95
- 3. L. Canton, et al, Phys. Rev. Lett. 94 (2005) 122503
- 4. J.P. Svenne, et al, Phys. Rev. C 73 (2006) 027601
- 5. L. Canton, et al, Phys. Rev. Lett. 96 (2006) 072502
- 6. I. Mukha, et al, Phys. Rev. C 79, 061301 (2009)
- 7. P. Fraser, et al, Phys. Rev. Lett. 101 (2008) 24501
- 8. L. Canton, et al, Phys. Rev. C 83 (2011) 047603
- 9. K. Amos, et al, Nucl. Phys. A912 (2013) 7-17