

Determining Power Spectra of High Energy Cosmics

Sheldon Campbell Center for Cosmology and AstroParticle Physics The Ohio State University

CAP Congress University of Alberta, June 15, 2015

THE OHIO STATE UNIVERSITY

Observing "Points" in the Sky

High-Energy Radiation Events

- Gamma-Rays
- Cosmic Ray Shower Events
- Cosmic Neutrinos
- Celestial Objects
 - Galaxies
 - AGN
 - X-ray Clusters

• • • •

Inference cosmic expansion history, large scale structure, galaxy formation, etc.

Inference radiation sources,

cosmic ray acceleration,

ray propagation, etc.

Potential radiation sources!

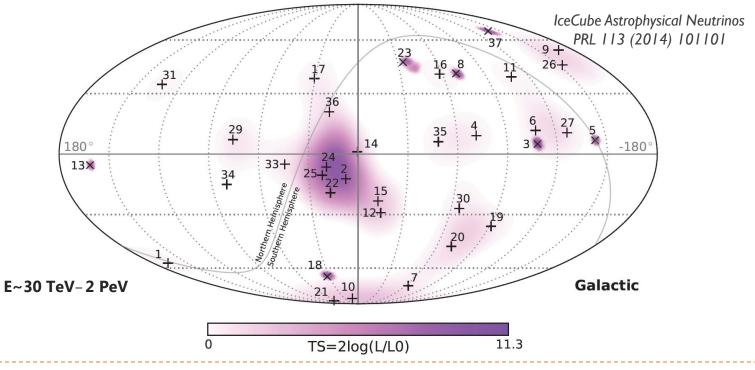
Specify distribution of a class of events/objects in the sky.

• objects in a redshift range, radiation events in an energy bin, etc.

Angular Distribution Methods

When point sources cannot be resolved,

the angular distribution of observed events approaches the angular distribution of sources (messenger-propagated and projected) on our sky (full skymap).

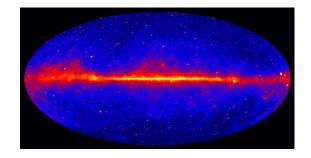


Angular Clustering of the Source Skymap

- Positive, real function on the sphere $F(\mathbf{n})$.
- Normalize: Let $S(n) = \frac{F(n)}{\langle F \rangle} 1$.
- Normalized spherical transform:

$$\tilde{a}_{\ell m} = \int d\boldsymbol{n} \, Y^*_{\ell m}(\boldsymbol{n}) \boldsymbol{S}(\boldsymbol{n})$$

For cosmic neutrinos, F is the apparent flux map of all sources.



Angular power spectrum:

$$\tilde{C}_{\ell} = \frac{1}{2\ell + 1} \sum_{m = -\ell}^{\ell} |\tilde{a}_{\ell m}|^2 = 4\pi \int \frac{dn_1}{4\pi} \frac{dn_2}{4\pi} \, S(n_1) P_{\ell}(n_1 \cdot n_2) \, S(n_2)$$

Angular bispectrum:

$$\tilde{B}_{\ell_1 \ell_2 \ell_3} = \sum_{m_1, m_2, m_3} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ m_1 & m_2 & m_3 \end{pmatrix} \tilde{a}_{\ell_1 m_1} \tilde{a}_{\ell_2 m_2} \tilde{a}_{\ell_3 m_3}$$

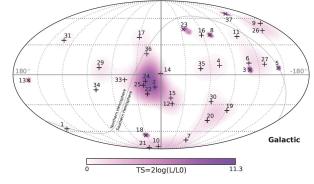
Sheldon Campbell, CAP Congress 2015 Determining Power Spectra of High Energy Cosmics

Angular Clustering of Observed Events

- Differential flux of events $F_N(\mathbf{n}) = \frac{4\pi}{\varepsilon} \sum_{i=1}^N \delta(\mathbf{n} \mathbf{n}_i)$.
 - Each term needs weights if exposure ε is not uniform.

• Normalize:
$$S_N(\boldsymbol{n}) = \frac{4\pi}{N} \sum_{i=1}^N \delta(\boldsymbol{n} - \boldsymbol{n}_i) - 1.$$

Normalized spherical transform: $\tilde{a}_{\ell m,N} = \frac{4\pi}{N} \sum_{i=1}^{N} Y_{\ell m}^{*}(\boldsymbol{n}_{i})$



Angular power spectrum of N events:

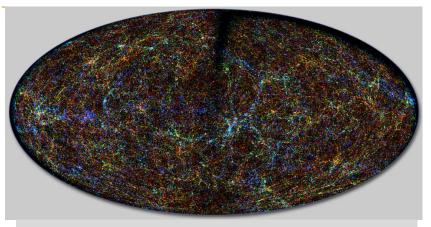
$$\tilde{C}_{\ell,N} = \frac{4\pi}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} P_{\ell}(\boldsymbol{n}_i \cdot \boldsymbol{n}_j)$$

Statistical properties of this observable tell us about the sources.

Sheldon Campbell, CAP Congress 2015
 Determining Power Spectra of High Energy Cosmics

The Problem

- Let \tilde{C}_{ℓ} be the fluctuation (normalized) APS of a **skymap**what we are trying to measure.
- Receive N events at random, weighted by the sky map.
- Assume full sky observations with uniform exposure.



A hypothetical projected skymap of sources.

The 2 micron sky courtesy of the 2MASS collaboration, http://www.ipac.caltech.edu/2mass/.

variance of $\tilde{C}_{\ell,N}$?

Sheldon Campbell, CAP Congress 2015 Determining Power Spectra of High Energy Cosmics

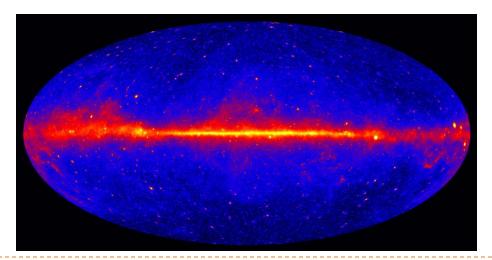
Simplest Model: Poisson Point Process

Only 2 assumptions (need experimental justification):

- 1. The skymap of sources is stationary over the exp. lifetime. Neglect transients. Their effect will depend on the timescales involved.
- 2. The observed events are independent.

The probability of observing an event at a given position depends on the source skymap, but not on previous events already observed.

The statistics of the observable $\tilde{C}_{\ell,N}$ are exactly solvable in this case.



Statistical Mean: Events Relate to Sources!

• The average measurement of $\tilde{C}_{\ell,N}$ from a random sample:

$$\left\langle \tilde{C}_{\ell,N} \right\rangle = \frac{4\pi}{N} + \left(1 - \frac{1}{N}\right) \tilde{C}_{\ell}$$

 \tilde{C}_{ℓ} is now APS of source skymap, convolved with instrument PSF.

• Angular power spectrum of events is a *biased* estimator of the source distribution.

• Therefore, an unbiased estimator $\hat{\tilde{C}}_{\ell,N}$ with $\langle \hat{\tilde{C}}_{\ell,N} \rangle = \tilde{C}_{\ell}$:

$$\hat{\tilde{C}}_{\ell,N} = \frac{1}{1 - \frac{1}{N}} \left[\tilde{C}_{\ell,N} - \frac{4\pi}{N} \right] = \frac{4\pi}{N(N-1)} \sum_{i} \sum_{j \neq i} P_{\ell}(\boldsymbol{n}_{i} \cdot \boldsymbol{n}_{j})$$

In agreement with other existing methods!

Exact Statistical Covariance of $\hat{\tilde{C}}_{\ell,N}$

$$\operatorname{Cov}\left[\hat{\tilde{C}}_{\ell_{1},N},\hat{\tilde{C}}_{\ell_{2},N}\right] = \frac{(4\pi)^{2}}{N(N-1)} \left\{ 2 \left[\frac{\delta_{\ell_{1},\ell_{2}}}{2\ell_{1}+1} + \tilde{C}_{\ell_{1}\ell_{2}}^{(2)} - \frac{\tilde{C}_{\ell_{1}}\tilde{C}_{\ell_{2}}}{(4\pi)^{2}} \right] + 4(N-2) \left[\frac{\delta_{\ell_{1},\ell_{2}}}{2\ell_{1}+1} \frac{\tilde{C}_{\ell_{1}}}{4\pi} + \frac{\tilde{C}_{\ell_{1}\ell_{2}}^{(3)}}{4\pi} - \frac{\tilde{C}_{\ell_{1}}\tilde{C}_{\ell_{2}}}{(4\pi)^{2}} \right] \right\}$$

$$\tilde{C}_{\ell_1\ell_2}^{(2)} = \sum_{\ell'=|\ell_1-\ell_2|}^{\ell_1+\ell_2} \frac{2\ell'+1}{4\pi} \begin{pmatrix} \ell_1 & \ell_2 & \ell' \\ 0 & 0 & 0 \end{pmatrix}^2 \tilde{C}_{\ell'}$$

$$\tilde{C}_{\ell_1\ell_2}^{(3)} = \frac{1}{\sqrt{(2\ell_1+1)(2\ell_2+1)}} \sum_{\ell'=|\ell_1-\ell_2|}^{\ell_1+\ell_2} \sqrt{\frac{2\ell'+1}{4\pi}} \begin{pmatrix} \ell_1 & \ell_2 & \ell' \\ 0 & 0 & 0 \end{pmatrix}} \tilde{B}_{\ell_1\ell_2\ell'}$$

Sheldon Campbell, CAP Congress 2015
 Determining Power Spectra of High Energy Cosmics

Analytic Work Generated Higher Order Angular Spectra

$$\tilde{\mathcal{C}}_{\ell_{1}\ell_{2}}^{(2)} = \sum_{\ell'=|\ell_{1}-\ell_{2}|}^{\ell_{1}+\ell_{2}} \frac{2\ell'+1}{4\pi} \begin{pmatrix} \ell_{1} & \ell_{2} & \ell' \\ 0 & 0 & 0 \end{pmatrix}^{2} \tilde{\mathcal{C}}_{\ell'}$$

$$\tilde{\mathcal{C}}_{\ell_{1}\ell_{2}}^{(3)} = \frac{1}{\sqrt{(2\ell_{1}+1)(2\ell_{2}+1)}} \sum_{\ell'=|\ell_{1}-\ell_{2}|}^{\ell_{1}+\ell_{2}} \sqrt{\frac{2\ell'+1}{4\pi}} \begin{pmatrix} \ell_{1} & \ell_{2} & \ell' \\ 0 & 0 & 0 \end{pmatrix}} \tilde{B}_{\ell_{1}\ell_{2}\ell'}$$

$$\tilde{C}_{\ell_1\ell_2}^{(4)} = \tilde{C}_{\ell_1}\tilde{C}_{\ell_2}$$

I know two ways to see that \tilde{C}_{ℓ} is the first order angular spectrum, and that these comprise the **complete** set of 2nd order spectra.

Higher Order Spectra: Field Theory Pic.

• Use the Spherical Harmonic Addition Theorem:

$$\frac{1}{2\ell+1} \sum_{m} Y_{\ell}^{m}(\boldsymbol{n}_{1}) Y_{\ell m}^{*}(\boldsymbol{n}_{2}) = \frac{1}{4\pi} P_{\ell}(\boldsymbol{n}_{1} \cdot \boldsymbol{n}_{2})$$

Angular Power Spectrum is like 2 field configurations connected by a "correlator".

$$\tilde{C}_{\ell} = 4\pi \int \frac{d\boldsymbol{n}_1}{4\pi} \frac{d\boldsymbol{n}_2}{4\pi} \, \boldsymbol{S}(\boldsymbol{n}_1) P_{\ell}(\boldsymbol{n}_1 \cdot \boldsymbol{n}_2) \, \boldsymbol{S}(\boldsymbol{n}_2) \quad \overset{\boldsymbol{n}_1 \quad \frac{\boldsymbol{n}_\ell}{\ell}}{\bullet} \, \boldsymbol{\bullet}$$

Higher Order Spectra: Field Theory Pic.

• All possible diagrams with 2 correlators.

$$\tilde{C}_{\ell_1 \ell_2}^{(2)} = \int \frac{dn_1}{4\pi} \frac{dn_2}{4\pi} \, S(n_1) P_{\ell_1}(n_1 \cdot n_2) P_{\ell_2}(n_1 \cdot n_2) S(n_2)$$

"Composite Angular Power Spectrum"

$$\tilde{C}_{\ell_1\ell_2}^{(3)} = 4\pi \int \frac{dn_1}{4\pi} \frac{dn_2}{4\pi} \frac{dn_3}{4\pi} S(n_1) P_{\ell_1}(n_1 \cdot n_2) S(n_2) P_{\ell_2}(n_2 \cdot n_3) S(n_3)$$

$$\tilde{C}_{\ell_1\ell_2}^{(4)} = \tilde{C}_{\ell_1} \tilde{C}_{\ell_2}$$

"Open Angular Bispectrum"
"Disjoint Angular Trispectrum"

Unbiased Estimators from N Events

$$\hat{\tilde{C}}_{\ell_1\ell_2,N}^{(2)} = \frac{1}{N(N-1)} \sum_{i_1} \sum_{i_2 \neq i_1} P_{\ell_1}(\boldsymbol{n}_{i_1} \cdot \boldsymbol{n}_{i_2}) P_{\ell_2}(\boldsymbol{n}_{i_1} \cdot \boldsymbol{n}_{i_2}) - \frac{\delta_{\ell_1\ell_2}}{2\ell_1 + 1}$$

$$\hat{\tilde{\mathcal{C}}}_{\ell_{1}\ell_{2},N}^{(3)} = \frac{4\pi}{N(N-1)(N-2)} \sum_{i_{1}} \sum_{i_{2}\neq i_{1}} \sum_{\substack{i_{3}\neq i_{2}\\i_{3}\neq i_{1}}} P_{\ell_{1}}(\boldsymbol{n}_{i_{1}} \cdot \boldsymbol{n}_{i_{2}}) P_{\ell_{2}}(\boldsymbol{n}_{i_{2}} \cdot \boldsymbol{n}_{i_{3}})$$
$$-\frac{\delta_{\ell_{1}\ell_{2}}}{2\ell_{1}+1} \hat{\tilde{\mathcal{C}}}_{\ell_{1},N}$$

$$\hat{C}_{\ell_1\ell_2,N}^{(4)} = \frac{(4\pi)^2}{N(N-1)(N-2)(N-3)}$$
$$\sum_{i_1} \sum_{i_2 \neq i_1} \sum_{\substack{i_3 \neq i_2 \\ i_3 \neq i_1}} \sum_{\substack{i_4 \neq i_3 \\ i_3 \neq i_1}} P_{\ell_1}(\boldsymbol{n}_{i_1} \cdot \boldsymbol{n}_{i_2}) P_{\ell_2}(\boldsymbol{n}_{i_3} \cdot \boldsymbol{n}_{i_4})$$

Sheldon Campbell, CAP Congress 2015 Determining Power Spectra of High Energy Cosmics

Statistical Covariance of
$$\hat{\tilde{C}}_{\ell,N}$$
 ($N \gg 1$)

$$\operatorname{Cov}\left[\hat{\tilde{C}}_{\ell_{1},N},\hat{\tilde{C}}_{\ell_{2},N}\right] = (4\pi)^{2} \left\{ \frac{2}{N^{2}} \left[\frac{\delta_{\ell_{1},\ell_{2}}}{2\ell_{1}+1} + \tilde{C}_{\ell_{1}\ell_{2}}^{(2)} - \frac{\tilde{C}_{\ell_{1}}\tilde{C}_{\ell_{2}}}{(4\pi)^{2}} \right] + \frac{4}{N} \left[\frac{\delta_{\ell_{1},\ell_{2}}}{2\ell_{1}+1} \frac{\tilde{C}_{\ell_{1}}}{4\pi} + \frac{\tilde{C}_{\ell_{1}\ell_{2}}^{(3)}}{4\pi} - \frac{\tilde{C}_{\ell_{1}}\tilde{C}_{\ell_{2}}}{(4\pi)^{2}} \right] \right\}$$

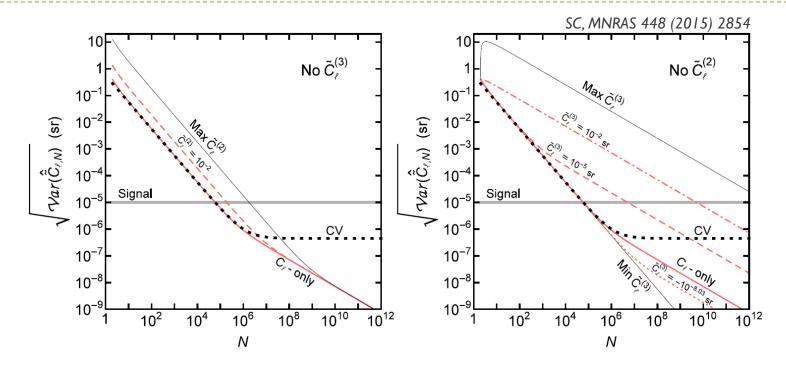
- If higher-order spectra are neglected:
 - the covariance is diagonal—each multipole measurement is independent.
 - call this C_{ℓ} -only statistical uncertainty.

$$\mathcal{V}\operatorname{ar}\left[\hat{\tilde{C}}_{\ell,N}\right] = \frac{2}{2\ell+1} \left[\left(\frac{4\pi}{N}\right)^2 + 2\left(\frac{4\pi}{N}\right)\tilde{C}_\ell \right] \qquad (C_\ell \text{-only})$$

Sheldon Campbell, CAP Congress 2015 Determining Power Spectra of High Energy Cosmics 6/15/2015

J

The New Error Terms Can Be Important



• Example uncertainty evolution at $\ell = 500$ with $\tilde{C}_{\ell} = 10^{-5}$ sr.

• A large open bispectrum significantly delays resolving \tilde{C}_{ℓ} with significance, but detection of presence of $\tilde{C}_{\ell}^{(3)}$ provides new constraints on the sources.

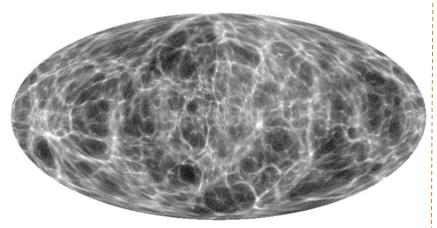
Conclusions

- A new analytic error analysis of angular power spectra of points is presented. This is a natural analysis to carry out with IceCube data.
- The unbiased estimator of the source's angular power spectrum is in agreement with usual estimates.
- The uncertainty has the usual shot noise and first order signal contributions, but gives new higher order anisotropy contributions.
- These results do not assume Gaussianity of signal/sources.
 - Results apply to any event distribution from stationary sources.
- These results allow for realistic estimates of the data requirements for distinguishing source models through angular distributions.

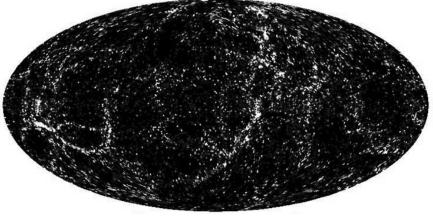
Extra Slides

Sheldon Campbell, CAP Congress 2015 Determining Power Spectra of High Energy Cosmics

Distinguishing Dense vs. Sparse



Francisco-Shu Kitaura et al., MNRAS 427, L35 (2012)



Dense Distributions, e.g.,

- radio galaxies
- dark matter annihilation

Sparse Distributions, e.g.,

- active galactic nuclei
- local extragalactic structure

All events from different source. More sources with multiple events.

Given N events, what can we infer about the full skymap?

Given physical source models, how many events would distinguish them?

A Popular Measure of Angular Distribution: The Angular Power Spectrum

Intensity Angular Power Spectrum C_{ℓ}

$$I(E, \mathbf{n}) - \langle I(E) \rangle = \sum_{\ell, m} a_{\ell m}(E) Y_{\ell}^{m}(\mathbf{n}) \qquad C_{\ell}(E) = \frac{1}{2\ell + 1} \sum_{m} |a_{\ell m}(E)|^{2}$$

- Absolute intensity fluctuations.
- Monotonically increases as sources are added.

Fluctuation Angular Power Spectrum $\widetilde{C_{\ell}}$ $\frac{I(E, n) - \langle I(E) \rangle}{\langle I(E) \rangle} = \sum_{\ell, m} \tilde{a}_{\ell m}(E) Y_{\ell}^{m}(n) \qquad \widetilde{C_{\ell}}(E) = \frac{1}{2\ell + 1} \sum_{m} |\tilde{a}_{\ell m}(E)|^{2}$

- Relative intensity fluctuations.
- Constant for universal spectrum sources at fixed redshift.

Special Case: Pure Isotropic Source

Receive N events at uniformly random positions.

$$\tilde{a}_{\ell m,N} = \frac{4\pi}{N} \sum_{i=1}^{N} Y_{\ell m}^{*}(\hat{n}_{i}) \qquad \tilde{C}_{\ell,N} = \frac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} \left| \tilde{a}_{\ell m,N} \right|^{2}$$

$$\langle \tilde{C}_{\ell,N} \rangle = \tilde{C}_{P,N} = \frac{4\pi}{N}$$

Shot noise/Poisson noise.

$$\sigma_{\tilde{C}_{\ell,N}} = \sqrt{\frac{2}{2\ell+1} \frac{4\pi}{N}}$$

Sheldon Campbell, CAP Congress 2015 Determining Power Spectra of High Energy Cosmics

Error Estimate with Anisotropic Source

Lesson from CMB: Cosmic Variance

- The dominant statistical uncertainty in CMB anisotropy.
 Cosmic Variance ⇔ Unknown Initial Conditions
- Assuming the signal is randomly Gaussian distributed, then our estimator for \tilde{C}_{ℓ} is the maximum likelihood estimator with uncertainty:

$$\sigma_{\tilde{C}_{\ell}} = \sqrt{\frac{2}{2\ell+1}}\tilde{C}_{\ell}$$

"Rule of Thumb" Stat. Uncertainty Est.

- Angular power spectrum from "events".
- Assume sources are approximately Gaussian distributed.
- Shot noise is a bias to be subtracted from estimator.

$$\hat{\tilde{C}}_{\ell,N} = \frac{1}{2\ell + 1} \sum_{m=-\ell}^{\ell} \left| \frac{4\pi}{N} \sum_{i=1}^{N} Y_{\ell m}^{*}(\boldsymbol{n}_{i}) \right|^{2} - \frac{4\pi}{N}$$
$$\sigma_{\hat{\tilde{C}}_{\ell,N}} = \sqrt{\frac{2}{2\ell + 1}} \left(\frac{4\pi}{N} + \tilde{C}_{\ell} \right)_{\text{Knox, PRD52, 4307 (1995)}}$$

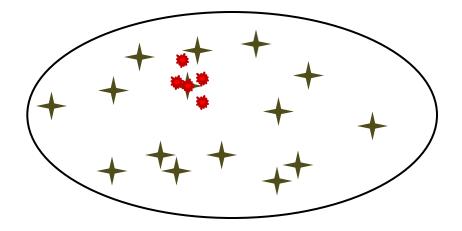
The goal is to check these standard estimates.

Improving Our Understanding of the Statistical Variance

- Some conceptual difficulties with using the cosmic variance as we did.
 - Cosmic variance is a theoretical error, which applies when making physical inferences about our models based on data.
 - The angular power spectrum measurement should be able to be made independently of any model.
 - We should not need to assume the signal is Gaussiandistributed.
- Investigations have led to a new formula for the modelindependent statistical variance of the angular power spectrum of events from a background distribution.

Strategy for Calculation

Consider each event observed at position \hat{n}' but originated from position \hat{n} .



1) For fixed source positions \hat{n}_i , average over event position \hat{n}_i' , via the instrument point spread function.

Result of this step: what is being measured is the sky map convolved with the instrument PSF.

 Average the N events source positions, weighted by the skymap.

Higher Order Spectra: Tensor Picture

First and Second Rank Spherical Harmonic Transforms of S:

$$\tilde{a}_{\ell m} = \int d\mathbf{n} \ Y_{\ell m}^*(\mathbf{n}) \ S(\mathbf{n}), \qquad \tilde{a}_{\ell_1 m_1 \ell_2 m_2} = \int d\mathbf{n} \ Y_{\ell_1 m_1}^*(\mathbf{n}) Y_{\ell_2 m_2}^*(\mathbf{n}) \ S(\mathbf{n})$$

• Raised Azimuthal Indices generated by $Y_{\ell}^{m} = (-1)^{m} Y_{\ell,-m}^{*}$:

$$\tilde{a}_{\ell_1 m_1 \ell_1}^{m_2} = \int d\mathbf{n} Y_{\ell m_1}^*(\mathbf{n}) Y_{\ell}^{m_2}(\mathbf{n}) S(\mathbf{n}) = (-1)^{m_2} \tilde{a}_{\ell_1, m_1, \ell_2, -m_2}$$

Create rank 0 (rotation invariant) tensors by contracting azimuthal indices:

$$\tilde{C}_{\ell} = \frac{1}{2\ell + 1} \sum_{m = -\ell}^{\ell} \tilde{a}_{\ell}^{\ m} \tilde{a}_{\ell m}$$

Higher Order Spectra: Tensor Picture

All possible rank 0 tensors from rank 1 and 2 transforms.

$$\begin{split} \tilde{C}_{\ell_{1}\ell_{2}}^{(2)} &= \frac{1}{(2\ell_{1}+1)(2\ell_{2}+1)} \sum_{m_{1},m_{2}} \tilde{a}_{\ell_{1}} \frac{m_{1}}{\ell_{2}} m_{2}} \tilde{a}_{\ell_{1}m_{1}\ell_{2}m_{2}} \\ \tilde{C}_{\ell_{1}\ell_{2}}^{(3)} &= \frac{1}{(2\ell_{1}+1)(2\ell_{2}+1)} \sum_{m_{1},m_{2}} \tilde{a}_{\ell_{1}} \frac{m_{1}}{\ell_{2}} m_{2}} \tilde{a}_{\ell_{1}m_{1}} \tilde{a}_{\ell_{2}m_{2}} \\ \tilde{C}_{\ell_{1}\ell_{2}}^{(4)} &= \tilde{C}_{\ell_{1}} \tilde{C}_{\ell_{2}} \\ &= \frac{1}{(2\ell_{1}+1)(2\ell_{2}+1)} \sum_{m_{1},m_{2}} \tilde{a}_{\ell_{1}} \frac{m_{1}}{\ell_{2}} \tilde{a}_{\ell_{1}m_{1}} \tilde{a}_{\ell_{2}} \frac{m_{2}}{\ell_{2}} \tilde{a}_{\ell_{2}m_{2}} \end{split}$$

Good Agreement with WMAP Data

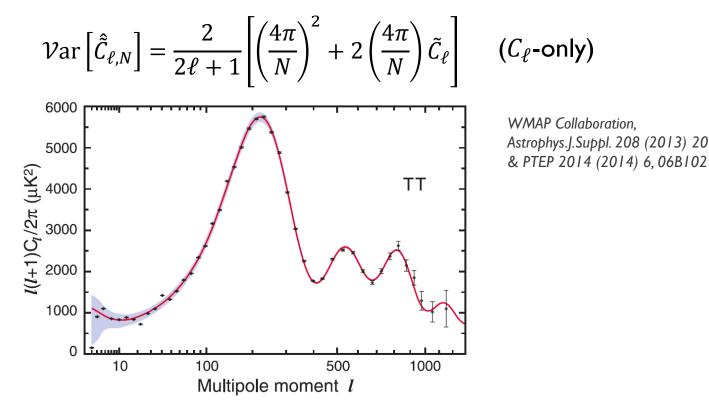
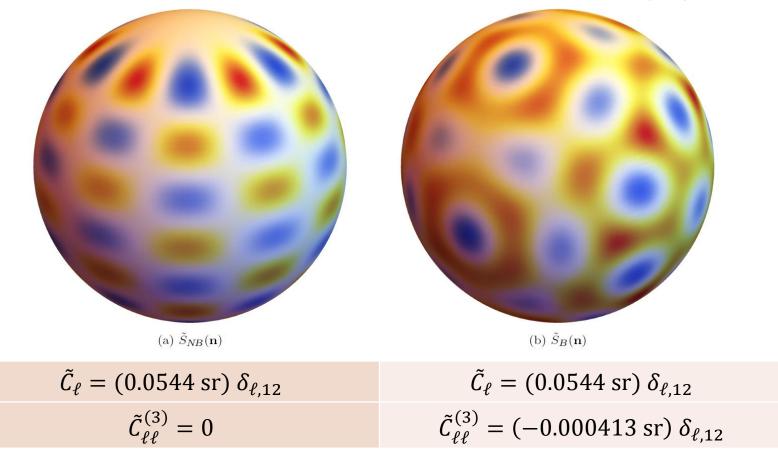


Fig. 5 Nine-year angular power spectrum of the CMB temperature (adapted from [37]). While we measure C_{ℓ} at each ℓ in $2 \leq \ell \leq 1200$, the points with error bars show the binned values of C_{ℓ} for clarity. The error bars show the standard deviation of C_{ℓ} from instrumental noise, $[2(2C_{\ell}N_{\ell} + N_{\ell}^2)/(2\ell + 1)f_{\text{sky},\ell}^2]^{1/2}$. The shaded area shows the standard deviation from the cosmic variance term, $[2C_{\ell}^2/(2\ell + 1)f_{\text{sky},\ell}^2]^{1/2}$ (except at very low ℓ where the 68% CL from the full non-Gaussian posterior probability is shown). The solid line shows the theoretical curve of the best-fit Λ CDM cosmological model.

Test with Monte-Carlo Sampling

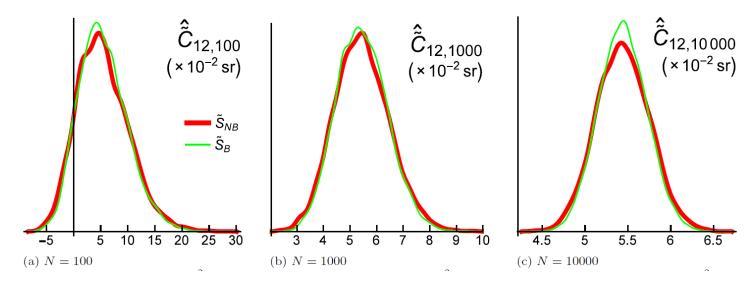
SC, MNRAS 448 (2015) 2854



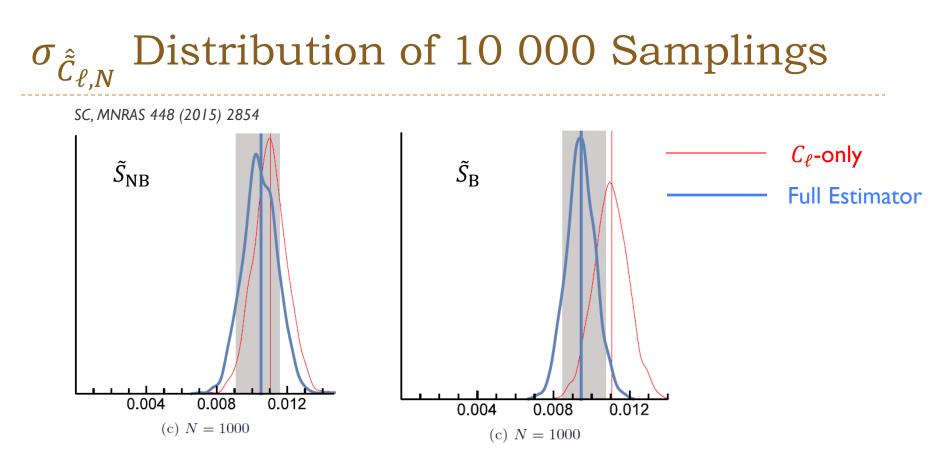
Sheldon Campbell, CAP Congress 2015 Determining Power Spectra of High Energy Cosmics

$\hat{\tilde{C}}_{\ell,N}$ Distribution of 10 000 Samplings

SC, MNRAS 448 (2015) 2854



- Low counts gives very wide distribution. Shot noise subtraction can give negative power spectrum estimates.
- At high counts, the distribution becomes narrow, and the distribution with negative bispectrum is visibly narrower.



- The negative bispectrum does indeed appear to lower the variance of the power spectrum measurement.
- Even the distribution without bispectrum is affected by the other higherorder spectra, but those effects are small and unresolved in this example.

Compare to Gaussian Cosmic Variance

Old method with shot noise + Gaussian cosmic variance:

$$\sigma_{\hat{\tilde{C}}_{\ell,N}}^{2} = \frac{2}{2\ell+1} \left(\frac{4\pi}{N} + \tilde{C}_{\ell}\right)^{2} \\ \simeq \left(\frac{4\pi}{N}\right)^{2} \left[\frac{2}{2\ell+1} + \frac{4N}{2\ell+1}\frac{\tilde{C}_{\ell}}{4\pi} + \frac{2N^{2}}{2\ell+1}\left(\frac{\tilde{C}_{\ell}}{4\pi}\right)^{2}\right]$$

New variance formula:

$$\sigma_{\hat{C}_{\ell,N}}^{2} \simeq \left(\frac{4\pi}{N}\right)^{2} \left[\frac{2}{2\ell+1} + 2\tilde{C}_{\ell}^{(2)} + \frac{4N}{2\ell+1}\frac{\tilde{C}_{\ell}}{4\pi} + 4N\frac{\tilde{C}_{\ell}^{(3)}}{4\pi} - 4N\left(\frac{\tilde{C}_{\ell}}{4\pi}\right)^{2}\right]$$

- The new formula agrees surprisingly well with the traditional estimate, with dominant contributions for a weak signal in precise agreement.
- New terms important at large N. Note no N-independent terms!

Gaussian-Distributed Sky Map

- Our results do not assume Gaussianity.
- If the sky map is Gaussian, then higher order spectra are determined from \tilde{C}_{ℓ} as follows:

$$\left\langle \tilde{C}_{\ell}^{(2)} \right\rangle = \sum_{\ell'=0}^{2\ell} \frac{2\ell'+1}{4\pi} \begin{pmatrix} \ell & \ell & \ell' \\ 0 & 0 & 0 \end{pmatrix}^2 \left\langle \tilde{C}_{\ell'} \right\rangle$$
$$\left\langle \tilde{C}_{\ell}^{(3)} \right\rangle = 0$$
$$\left\langle \tilde{C}_{\ell}^{(4)} \right\rangle = \frac{2\ell+3}{2\ell+1} \left\langle \tilde{C}_{\ell} \right\rangle^2$$

Consequences of Findings

- Experiments using Monte Carlo to estimate error already take into account these new effects automatically.
- Experiments using Gaussian Cosmic Variance may be missing higher orders in the uncertainty of angular power.
 - Fermi-LAT anisotropy measurement should check estimators of these terms for possible corrections to their uncertainties.
 - Small χ^2 suggests either their errors should be smaller (possibly due to some more subtle effects) or energy bins are somehow correlated.

This error analysis must also take into account effects of:

- non-uniform exposure,
- sky masking,
- other observational bias or instrumental effects.