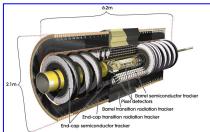
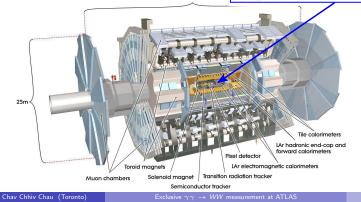
Exclusive $\gamma \gamma \rightarrow WW$ measurement with the ATLAS experiment at the LHC

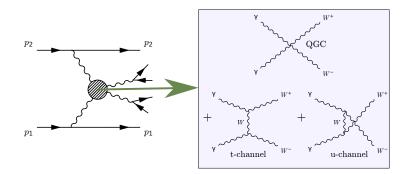

Chav Chhiv Chau ATLAS Collaboration


University of Toronto

CAP Congress 2015 June, 2015

Outline

- Physics motivation
- Analysis strategy
- Monte Carlo normalization
- Preliminary results
- Summary

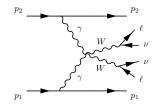


44m

Physics motivation

- Sensitive to anomalous quartic gauge couplings (aQGC)
- Main goals of the analysis:
 - Measure the $p\gamma\gamma p
 ightarrow pWWp$ cross-section
 - Search for evidence of new physics

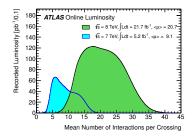
Anomalous quartic gauge couplings


- We could extend the Standard Model as follows: $\mathcal{L}=\mathcal{L}_{SM}+\mathcal{L}_6^0+\mathcal{L}_6^C$

$$\begin{aligned} \mathcal{L}_{6}^{0} &= \frac{e^{2}}{8} \frac{a_{0}^{W}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-} - \frac{e^{2}}{16 \cos^{2} \theta_{W}} \frac{a_{0}^{Z}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} Z^{\alpha} Z_{\alpha} \\ \mathcal{L}_{6}^{C} &= \frac{-e^{2}}{16} \frac{a_{C}^{W}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\alpha} (W^{+\alpha} W_{\beta}^{-} + W^{-\alpha} W_{\beta}^{+}) - \frac{e^{2}}{16 \cos^{2} \theta_{W}} \frac{a_{C}^{Z}}{\Lambda^{2}} F_{\mu\beta} F^{\mu\beta} Z^{\alpha} Z_{\beta} \end{aligned}$$

- \mathcal{L}_6^0 and \mathcal{L}_6^C conserve local U(1), global SU(2), charge conjugation and parity
- Searches for the anomalous couplings a_0^W/Λ^2 and a_C^W/Λ^2 have been performed at LEP, Tevatron and CMS (7 TeV data)
- Also consider models with dimension-8 operators

Exclusive $p\gamma\gamma p \rightarrow pWWp$ production


- Exclusive $p\gamma\gamma p \rightarrow pWWp \rightarrow pe\nu\mu\nu p$ production
 - Fully leptonic decay mode has a very clean signature
 - Incoming protons escape the interaction intact
 - Two lepton tracks coming from the event vertex

- Opposite flavour channel has 10 times less background than ee or $\mu\mu$ channel
- Main background are inclusive production of WW, $p\gamma\gamma p \rightarrow p\tau\tau p$
- Use the data taken at $\sqrt{s} = 8$ TeV by the ATLAS experiment in 2012

Event pile-up

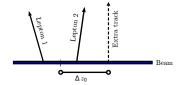
- Many interactions occur during every LHC bunch crossing (called pile-up)
- Average pile-up during the 2012 operation was about 20, two times more than 2011
- Distinguishing the signal process from these underlying interactions is more challenging
- Strategy: Look for vertices having exactly two tracks that are isolated from other objects

Event display showing a Z boson candidate (bold yellow tracks) with 25 reconstructed vertices

Strategy for selecting exclusive events

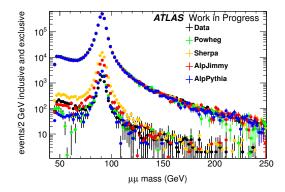
• Track selection:

- Must leave some hits in the inner tracking system, to ensure good reconstruction
- Must have $p_{\mathrm{T}} > 0.4$ GeV

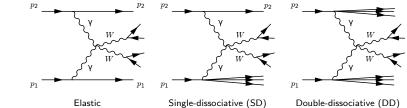

• Lepton selection:

- Have to be well identified electrons or muons
- Must be reconstructed in the region covered by the inner tracking system ($|\eta| < 2.5)$
- Must have $p_{\mathrm{T}} > 20~\mathrm{GeV}$

• Exclusivity selection:


- Select the two highest p_{T} leptons that also satisfy $m_{\ell\ell} > 20$ GeV
- Require that the distance between the two lepton longitudinal impact parameter be $\Delta z_0(\ell,\ell) < 1~\text{mm}$
- Reject events having tracks unmatched to the selected leptons within 1.5 mm of the event vertex
 - \bullet Track matched to a lepton if $\Delta R({\rm track},\ell) < 0.01$ and $\Delta z_0({\rm track},\ell) < 1$ mm

Event vertex
$$\equiv (z_0^{\ell 1} + z_0^{\ell 2})/2$$

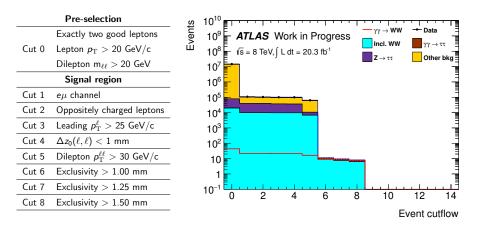

Background modelling

- MC generators don't model the track multiplicities well
- The exclusivity selection in simulation is not as efficient as in data
- We calibrate the exclusivity efficiencies using $Z
 ightarrow \mu \mu$ events

Contribution from dissociative processes

• Observed $p\gamma\gamma p \rightarrow pWWp$ events come from:

- SD and DD processes are not modelled well by MC generators
- Can estimate the SD and DD contribution from data


Strategy:

- Look at the $\mu\mu$ channel above $\mathsf{m}_{\mu\mu}=160~\mathsf{GeV}$
- Compute the total $\gamma\gamma
 ightarrow \mu\mu$ events (elastic + SD + DD) from data
- Count the number of elastic events from simulation
- Determine the ratio given by:

$$\frac{\rm N_{observed} - N_{background}}{\rm N_{elastic}}$$

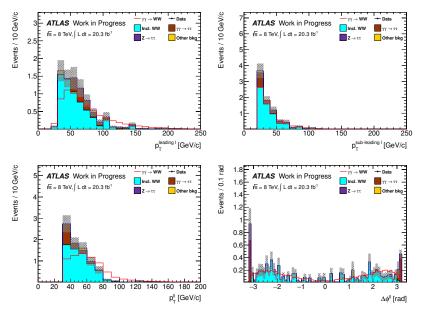
 \bullet For the exclusivity selection of 1.5 mm, the ratio is 2.76 \pm 0.21

Event cutflow

- In the plot, the data is not shown after the exclusivity, because we are performing a blind analysis
- We are optimizing the criteria defining the aQGC signal region
- We will look at the data soon

Expected event yields

• Expected event yield with statistical uncertainties:

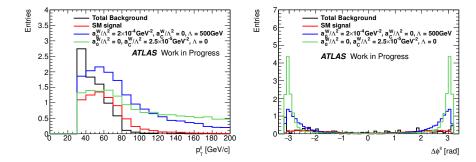

	$\gamma\gamma \to WW$	0		, ,		0
Exclusivity $> 1.5 \text{ mm}$	7.01 ± 0.06	8.0 ± 0.6	6.2 ± 0.5	1.7 ± 0.3	0 ± 0	0.1 ± 0.1

- Main background is inclusive WW production and exclusive $\gamma\gamma \rightarrow \tau\tau$.
- The QCD processes such as Z+jets, W+jets and $t\bar{t}$ are highly suppressed by the exclusivity selection
- The expected significance is

 $\frac{\rm signal}{\sqrt{\rm signal + \rm background}} \approx 2$

• Plan to complete the analysis and publish by the end of the year

Kinematic distributions after exclusivity of 1.5 mm

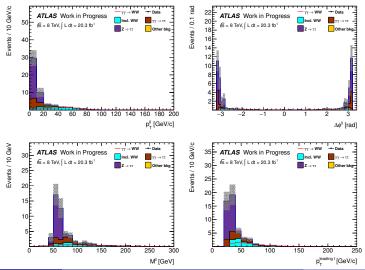


Predicted aQGC contribution

• Comparison of Standard model prediction to 2 example cases where:

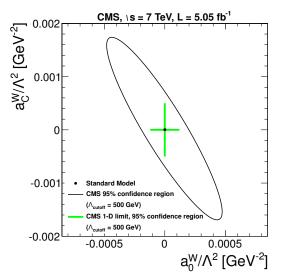
1)
$$a_0^W/\Lambda^2 = 2 \times 10^{-4} \text{ GeV}^{-2}$$
, $a_C^W/\Lambda^2 = 0$, $\Lambda_{\text{cutoff}} = 500 \text{ GeV}$
2) $a_0^W/\Lambda^2 = 0$, $a_C^W/\Lambda^2 = 2.5 \times 10^{-5} \text{ GeV}^{-2}$, $\Lambda_{\text{cutoff}} = 0$

- Searches for new physics can be performed in the high $p_T^{\ell\ell}$ region, e.g. above 130 GeV, where the SM contribution is very small
- Anomalous quartic gauge couplings would increase the number of events near $\Delta \phi^{\ell \ell} = \pi$ and $-\pi$, hence no cut on this variable

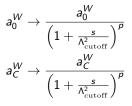

Summary

- Exclusive $p\gamma\gamma p \rightarrow pWWp$ production has a very clean signature
- This process probes the $WW\gamma\gamma$ coupling, possibly enhanced by physics beyond the Standard Model
- Preliminary studies predict 7 signal candidates over a total background of 8 events, resulting in a significance of about 2
- Plan to unblind the data soon and publish a paper by the end of the year

Additional materials


Rejection power of $p_{\rm T}^{\ell\ell}$

- Plots were produced after applying the nominal selection, except the $p_{\mathrm{T}}^{\ell\ell}$ cut
- $Z \to \tau \tau$ and $p \gamma \gamma p \to p \tau \tau p$ dominate the region $p_{\rm T}^{\ell \ell} <$ 30 GeV
 - All Z o au au events are rejected by the $p_{
 m T}^{\ell\ell}$ cut, see the table in slide 11


CMS limits

- Were obtained using the 2011 data, JHEP 07 (2013) 116
- Are the current most stringent experimental limits on a_0^W/Λ^2 and a_C^W/Λ^2

Unitarity constraint

- New terms \mathcal{L}_6^0 and \mathcal{L}_6^C , introduced in slide 4 can lead to unitarity violation at high energy
- One solution is to modify the parameter a_0^W and a_C^W as follow

- The parameter s is the $\gamma\gamma$ center-of-mass energy
- \bullet Previous studies, done at LEP and CMS, set $\Lambda_{\rm cutoff}$ to 500 GeV and $\it p$ to two