Jun 13 – 19, 2015
University of Alberta
America/Edmonton timezone
Welcome to the 2015 CAP Congress! / Bienvenue au congrès de l'ACP 2015!

Three-dimensional scanning near field optical microscopy imaging of random arrays of copper nanoparticles and their use for plasmonic solar cell enhancement

Jun 17, 2015, 10:00 AM
CCIS L1-047 (University of Alberta)

CCIS L1-047

University of Alberta

Oral (Student, In Competition) / Orale (Étudiant(e), inscrit à la compétition) Condensed Matter and Materials Physics / Physique de la matière condensée et matériaux (DCMMP-DPMCM) W1-6 Devices (DCMMP) / Dispositifs (DPMCM)


Mr Sabastine Ezugwu (The University of Western Ontario)


In order to investigate the suitability of random arrays of nanoparticles for plasmonic enhancement in the visible-near infrared range, we introduced three-dimensional scanning near-field optical microscopy (3D-SNOM) imaging as a useful technique to probe the intensity of near-field radiation scattered by random systems of nanoparticles at heights up to several hundred nm from their surface [1]. We demonstrated our technique using random arrays of copper nanoparticles (Cu-NPs) at different particle diameter and concentration. Bright regions in the 3D-SNOM images, corresponding to constructive interference of forward-scattered plasmonic waves, were obtained at heights Δz ≥ 220 nm from the surface for random arrays of Cu-NPs of about 60–100 nm in diameter. These heights are too large to use Cu-NPs in contact of the active layer for light harvesting in thin organic solar cells, which are typically no thicker than 200 nm. Using a 200 nm transparent spacer between the system of Cu-NPs and the solar cell active layer, we demonstrate that forward-scattered light can be conveyed in 200 nm thin film solar cells. This architecture increases the solar cell photoconversion efficiency by a factor of 3. Our 3D-SNOM technique is general enough to be suitable for a large number of other applications in nanoplasmonics. ________ [1] S. Ezugwu, H. Ye and G. Fanchini, Nanoscale 7 (2015) 252-260.

Primary author

Mr Sabastine Ezugwu (The University of Western Ontario)


Prof. Giovanni Fanchini (The University of Western Ontario) Mr Hanyang Ye (The University of Western Ontario)

Presentation materials

There are no materials yet.