Technical support for experiment development and construction

1) TRIUMF and detector construction
2) R&D in SAP community

F. Retière, TRIUMF
Experiment construction, a changing funding model

- In the past TRIUMF funding via NRC contribution agreement was able to support major projects (e.g. ISAC, T2K, etc.) together with NSERC (pre-2010), and CFI (post 2010)
- Currently TRIUMF funding via NRC contribution agreement covers operational needs and manpower for flagship project ARIEL-II
- Project funds (ARIEL-II capital + detector projects [ATLAS, ALPHAq]) have to come from competitive sources like CFI
- CFI projects bring in new capital for hardware and manpower (helps maintain level of TRIUMF expertise)
TRIUMF science technology department

- A new organization for technical support created in 2014
- Combine Detector facility, Detector electronics, Electronics development, Data acquisition
 - + GEANT4 and some R&D
 - Considering adding conceptual design and project management capabilities
- A vertical integration to better respond to user needs...?
 - Can do everything (?)
Working together on future projects

• Short term
 – ATLAS-TGC
 – ALPHAg
 • All stages: design / construction / commissioning
 • Mechanical, electronics, DAQ. Scale comparable to T2K

• Long term. Securing projects in the next CFI round
 – ATLAS-ITK, PINGU/Hyper-K, Experiment or R&D for SNOLAB, ... your project?

• TRIUMF’s view
 – We need/want to work with you on projects
 • Sharing resources. Identify expertise at various institutions?, Could the MRS model be adapted?
 • Sharing expertise. Technical network. Organize yearly workshop at the technical level (E.g. for electronics engineer/tech and machinist)
 • Sharing science? could take parts of a project without TRIUMF contributing scientifically
 – The community needs state-of-the-art infrastructure
 – Improve ties with industry to enhance our “benefit to Canadian” credentials

6/14/2015
R&D paving the way for future projects or pie in the sky?

• Main pros:
 – new technology enables new physics
 • Copying is ok but requires catching up later on
 – Spin-off to other (applied) fields
 • Benefit to Canadians
 • E.g. photo-detectors for imaging, materials science

• Main cons
 – May not succeed
 • Sub-critical effort is often a serious issue
 – May never be used
 • Projects get canceled or delayed. E.g. will ILC or nEXO get funded?

• R&D within Canadian SAP now
 – Weak or strong?
 • Is it a matter of opinion?
 – No clearly dominant institution
 • Opportunity for collaboration
 – Current funding model tends to be project oriented
 • except startup?
 • Possible issue for shared R&D between projects

• Supporting R&D in the future (LRP)?
 – Towards what end?
 – Focused or not?
My view on R&D

• Organizing R&D in Canada
 – Model 1: uncoordinated R&D
 • Maximize academic freedom
 • Serious sub-critical risk
 • Foster new ideas
 – Model 2: pan-Canadian collaboration
 • Focus on few technologies: e.g. photodetector, tracking or calorimeter
 • Ensure sufficient resources available for success
 • Foster synergies between groups
 – Model 3: in-between
 • Foster ideas early on
 • Focus later on
 • Best solution if we can make it work

• Now is the time to discuss and come up with a plan for the LRP and future funding opportunities

• Opportunity to push for photodetector R&D in Canada
 – Multiple compelling projects
 • PP: nEXO, DEAPer (?), SNO++(?), Hyper-K, PINGU
 • Nuclear physics: Compton shields, LaBr,…
 • Others: muSR, medical imaging
 – Competitive expertise and resources in Canada
 • Analog SiPMs at TRIUMF
 • 3D integrated at U.Sherbrooke (for medical imaging)
 • Wide PMT expertise (e.g. PTF)
 – Some possible connections with Industry: Zecotek, Dalsa,…
 – Funding models
 • Infrastructure from CFI? Drive by medical imaging?
 • Include other technologies
 – … Planning a dinner meeting on Tuesday evening