## A Multiorbital DMFT Analysis of Electron-Hole Asymmetry in the Dynamic Hubbard Model



Christopher Polachic Frank Marsiglio



## The Hubbard Model

$$H = -\sum_{i,j,\sigma} t_{ij} (c^{\dagger}_{i\sigma} c_{j\sigma} + c^{\dagger}_{j\sigma} c_{i\sigma}) + U \sum_{i} c^{\dagger}_{i\uparrow} c_{i\uparrow} c^{\dagger}_{i\downarrow} c_{i\downarrow}$$

- restrict *i* and *j* to nearest neighbour lattice sites
- Pauli exclusion allows only two electrons per site
- *U* double occupancy Coulomb repulsion
- $t_{ij}$  nearest-neighbour hopping
- single band model
- electron-hole symmetric

## **Double Occupancy and Orbital Relaxation**

- The Hubbard model assumes a single orbital on each lattice site and an electron's state is static regardless of occupancy.
- J. E. Hirsch, Phys. Rev. B 65, 184502 (2002): The real electronic ground state includes higher-orbital contributions with weaker Coulomb repulsion which become especially important for strongly-correlated systems (large local Coulomb repulsion) at high filling
- Need to adjust the Hubbard model to capture the flexibility for electrons to change their state in response to changes in occupancy: dynamic Hubbard model

## **Dynamic Hubbard Model (DHM)**

J. E. Hirsch, Phys. Rev. B 65, 184502 (2002)

- Two non-degenerate orbitals: energies  $\epsilon_0 < \epsilon_1$
- Three local Coulomb repulsions  $U_0$ ,  $U_1$ ,  $U_{01}$
- Two intraband hopping parameters  $t_0$ ,  $t_1$
- Nonlocal hybridization (interband hopping)  $t_{01}$
- Local interband hybridization t'



## **DHM Hamiltonian**

## **Orbital Relaxation in the DHM**

Double occupancy energy-ordering conditions



 $U_1 + 2\epsilon_1 < U_{01} + \epsilon_0 + \epsilon_1 < U_0 + 2\epsilon_0$ 

# Comparison: Four-Site Exact Diagonalization

• J. E. Hirsch, Phys. Rev. B 67, 035103 (2003)

• Main result: electron-hole asymmetry in the Dynamic Hubbard Model

• fixed values of 
$$t' = 0.2$$
,  $t_{01} = 1.0 = t_0 = t_1$ 

# Multiorbital Dynamical Mean Field Theory (MODMFT)

A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

- Maps an infinite-dimensional lattice model onto a local impurity model
- Solve the impurity model self-consistently for a set of effective mean field parameters which approximate the influence of the full lattice environment on a single site
- Retains the local dynamics of electronic occupancy of the impurity, yielding the Green's function and self energy of the system



#### Result: Observed Asymmetry in Z

$$U_0 = 10.0, U_{01} = 6.0, U_1 = 5.0, t_0 = t_1 = t_{01} = 1.0, t' = 0.2$$

Quasiparticles become increasingly dressed with orbital relaxation.



#### Or the Opposite Effect...

$$U_0 = 3.0, U_{01} = 2.0, U_1 = 1.0, t_0 = t_1 = t_{01} = 1.0, t' = 0.2$$

Quasiparticles can also *undress* with orbital relaxation.



The Influence of Mott Physics on Dressing (Not Evaluated in Hirsch's ED Study)

 $U_0 = 10.0, U_{01} = 6.0, U_1 = 5.0, t_0 = t_1 = t_{01} = 1.0, t' = 0.2$ 



### The Influence of Mott Physics on Undressing $U_0 = 3.0, U_{01} = 2.0, U_1 = 1.0, t_0 = t_1 = t_{01} = 1.0, t' = 0.2$

![](_page_11_Figure_1.jpeg)

## The Influence of Hybridization

 t<sub>01</sub> is qualitatively more relevant to the physics of orbital relaxation than the (local) t' hybridization parameter. For example:

 $U_0 = 3.0, U_{01} = 2.0, U_1 = 1.0, t_0 = t_1 = t_{01} = 1.0, t' = 0.2, \epsilon_1 = 10.0$ 

![](_page_12_Figure_3.jpeg)

## Asymmetry Evidenced in Optical Conductivity Weight Transfer

 $U_0 = 10.0, U_{01} = 5.0, U_1 = 0.5,$ <br/> $t_0 = t_1 = 1.0, \epsilon_1 = 4.0, \eta = 0.1$ 

- Hole regime shows transfer of low energy to higher energy features: electron-hole asymmetry
- Significant effect of hybridization on the low energy Drude region

![](_page_13_Figure_4.jpeg)

## Conclusions

- Confirmed Hirsch's four-site ED observation of electronhole asymmetry in the dynamic Hubbard model
  - in the quasiparticle weight
  - in optical conductivity weight transfer
- Nonlocal hybridization is qualitatively more important than local hybridization
- Complicated dependence of orbital relaxation on the energy gap, hybridization values and Mott physics in the DHM

![](_page_15_Picture_0.jpeg)

## **MODMFT Background**

- MODMFT has been in use since the earliest years of DMFT studies
- Q. Si and G. Kotliar, Phys. Rev. Lett. 70, 3143 (1993)
- Q. Si and G. Kotliar, Phys, Rev. B 48, 13881 (1993)
- Benchmark: A. Liebsch and H. Ishida, J. Phys.-Condens. Mat. 24, 053201 (2012)

- Several studies of two-orbital systems with local hybridization t'
- Few with nonlocal hybridization  $t_{01}$
- Focus has been on orbital selective Mott transitions with Hund's coupling; none appear to address the dynamic Hubbard model