Why Linear Optics? Theory and Experiment

Linear optics is powerful for quantum computing and control:
- Linear optics + detectors is universal for quantum computing.
- Sampling linear optics outputs is classically hard.
- Optical quantum walk nonclassical behaviour.

Rapid advance in experimental implementation:
- On-demand single-photon sources,
- Efficient number-resolving detectors with low dark counts,
- Tunable photonic integrated circuits to implement arbitrary linear optics protocol.

Problem

The current procedure for simulation of multi-photon multi-channel interferometers is suboptimal and not intuitive.

Enter Group Theory (Two-Photon Interference)

Brute Force Interferometer Simulation

- \(n \) photons in \(m \) channels:
 \[
 a_1^\dagger \to \sum_{j=1}^m U_1^j a_j^\dagger \\
 a_2^\dagger \to \sum_{j=1}^m U_2^j a_j^\dagger \\
 \vdots \\
 a_n^\dagger \to \sum_{j=1}^m U_n^j a_j^\dagger
 \]

- Not intuitive for interpreting outputs.
- Expensive. \(O(n!) \) cost of computing outputs.

Results: Algorithms for Boson Realizations, \(\mathcal{D} \)-Functions and Interferometry

- New graph-theoretic algorithm for computing boson realizations and \(\mathcal{D} \)-functions of SU(\(n \)) irreps for arbitrary \(n \).
- New algorithms for performing interferometry using \(\mathcal{D} \)-functions.

Results: Faster Interferometer Simulation

Representation theory enables us to exploit permutation symmetries inherent in bosons to effect a reduction in the computational cost of simulating interferometers.