Ultracold Neutrons and Neutron EDM

J. Martin

The University of Winnipeg

1KEK, Tsukuba, Ibaraki, Japan
2The University of British Columbia, Vancouver, BC, Canada
3The University of Winnipeg, Winnipeg, MB, Canada
4The University of Manitoba, Winnipeg, MB, Canada
5TRIUMF, Vancouver, BC, Canada
6RCNP, Osaka, Japan (Osaka University, Osaka, Japan)
7The University of Northern BC, Prince George, BC, Canada
8Osaka University, Osaka, Japan
9Simon Fraser University, Burnaby, BC, Canada
Ultracold Neutrons (UCN)

• Neutrons that are moving so slowly that they bounce off surfaces and can be bottled.
 – $v < 8 \text{ m/s} = 30 \text{ km/h}$
 – $T < 4 \text{ mK}$
 – K.E. < 300 neV

• Interactions:
 – Gravity: $V = mgh$ \quad mg = 100 \text{ neV/m}$
 – Magnetic: $V = -\mu B$ \quad $\mu = 60 \text{ neV/T}$
 – Strong: $V = V_{\text{eff}}$ \quad $V_{\text{eff}} < 335 \text{ neV}$
 – Weak: $\tau = 886 \text{ s} = 15 \text{ mins.}$
What are the best experiments for UCN?

• Those best using their long storage/spin coherence time:
 – Neutron EDM (strong CP problem, SUSY CP problem, electroweak baryogenesis)
 – Neutron lifetime (BBN, V_{ud}/CKM unitarity)
 – Angular correlations, precision spectroscopy in beta decay (V_{ud}/CKM, scalar/tensor currents)
 – n-\bar{n} oscillations? Quantum computing/error studies?

• Those best using their low energy
 – Neutron gravity levels above a mirror (gravity at μm scales, chameleon fields, fifth force, …)
 – Surface science of big organic molecules?

• Generally accepted that nEDM is top science priority for this field, given present UCN fluxes; it is our flagship experiment.

• Breakthrough in UCN production would improve precision of experiments, and open up new possibilities (free n target?)
Spallation-driven Superfluid He-II UCN Source

UCN production recipe:
- **Spallation** – Liberate neutrons from W target
- **Moderation** – Thermalize, cool neutrons in D$_2$O ice
- **Conversion** – Convert cold neutrons to UCN in He-II

General Layout of UCN Source at RCNP Osaka

- **Thermal, Cold & Ultra-Cold neutrons**
- **MeV neutrons**

Moderators
- Thermal: Graphite, 300K D$_2$O
- Cold: 10K D$_2$O ice

400 MeV protons
Source developed and tested in Japan, shipping to TRIUMF in Oct. 2015

Beamline prepared at TRIUMF, for extended running periods at ~40x higher intensity
Connection to Phase I nEDM experiment

2012-2014: Develop/Test Source (& nEDM) at RCNP [1+ μA]
2015: Source moves to TRIUMF
2016: Commission Source at TRIUMF [ramp to 40μA]
Sakharov’s Criteria and EW Baryogenesis Solutions

Criteria

• Departure from thermal equilibrium
• B-violation
• CP-violation

EW Baryogenesis

EW Baryogenesis Problems:

• EW phase transition not strong enough
• Not enough CP violation

Requires new physics and CP-violation near the EW scale
Sensitivity to new sources of CP violation

Induces: $d_q \sim \frac{\alpha}{\pi} \times \frac{m_q}{\Lambda^2_{SUSY}} \times \sin\theta_{CP}$

e.g. SUSY CP problem and relationship to LHC

M. Pospelov and A. Ritz,
A. Ritz, TRIUMF Summer Institute, 2012.
Sensitivity to SM sources of CP violation

• Strong sector may violate CP via θ term.
• Naively $\theta \sim 1$.
• Experimentally $\theta < 10^{-11}$, constrained mainly by nEDM.

Strong CP problem
Solution: Peccei-Quinn symmetry, axions(?)

• CKM CP violation is 10^{-31} e-cm background
Electric dipole moments and CP violation

\[H = -\mu \cdot \vec{B} - d \cdot \vec{E} \]

• The EDM (\(d\)) term violates CP.
• New sources of CP violation required in e.g. electroweak baryogenesis.

\[hv = 2\mu B \pm 2dE \]

• Precision goal \(\delta d_{\text{stat}} = 1.4 \times 10^{-25}\) e-cm/cycle, \(10^{-27}\) e-cm ultimately.
TRIUMF Neutron EDM Experiment

• Overview/Goals:
 – Our approach: Spallation-driven superfluid-helium UCN source connected to room-temperature nEDM experiment.
 – Present world’s best limit (Sussex/RAL/ILL)
 \[d_n < 3 \times 10^{-26} \text{ e-cm} \]
 – SM (CKM) lower bound
 \[d_n > \sim 10^{-31} \text{ e-cm} \]
 – Our goal sensitivity:
 \[\delta d_n \sim 10^{-27} \text{ e-cm ("phase 2") } \]
 \[\delta d_n \sim 10^{-28} \text{ e-cm (possible with source upgrades)} \]

• Features of nEDM expt.:
 – New UCN source with potential world-leading density
 – Room temperature with flexibility e.g. to modify cell size in light of systematics vs. stats.
 – New dual \(^{129}\text{Xe}\) 2-photon + \(^{199}\text{Hg}\) comagnetometers
 – Improved magnetic field control, diagnostics.

\[\pm E \rightarrow B \]
\[\nu \rightarrow J \]
\[h\nu = 2\mu_n B \pm 2d_n E \]
Recent UCN highlights

2014, TRIUMF (completed):
• septum
• dipole
• replacement of shielding towards cyclotron

2013-14, RCNP, Osaka:
• successful cooldown of new cryostat to 0.7 K
• first UCN beam time
• UCN production and extraction demonstrated

Source commissioned (in Japan)
Plan for TRIUMF Installation periods: ~Jan-Apr each year

2014:
- septum
- dipole
- replacement of shielding towards cyclotron

2015:
- decommissioning of existing beamline M13
- quads
- source shielding

2015/16:
- kicker
- target
- moderators
- He-II cryostat
- UCN guides
- UCN polarizer
- finish shielding

2015 Non-Shutdown & 2016 Shutdown

2014 Shutdown

2015 Shutdown

2016 Shutdown
Present Status of UCN Facility

UCN Source (2013-14, RCNP)
- successful cool down of new cryostat to 0.7 K \(\rightarrow\) 0.58 K
- ext. heat load from 1 \(\rightarrow\) 0.2 W
- first UCN beam time
- UCN prod.\(^n\) in \(^4\)He (natural) and extraction demonstrated (despite large \(^3\)He fraction)

2014
- Septum
- Dipole & Girder
- Shielding Plug

2015
- Vault Components
- M13 Decommission
- Quads & D/S section
- Shield Pyramid Base

Kicker in 2016

Vault section

D/S section

Pyramid base

Target in 2016

U/S section

BL1U

BL1A
2015 Highlights and 2016 plans

1. Design/safety review June 2015
2. Target design review July 2015
3. UCN source shipment Oct. 2015
4. More reviews
nEDM experiment first priority (after UCN source commissioning)

UCN
- **@RCNP**
 - UCN development
- **@TRIUMF**
 - Beamline, target, shielding installation

EDM
- **@RCNP**
 - EDM development
- **@TRIUMF**
 - EDM R&D for Phase 2
 - EDM Phase 1

Timeline
- **2015**
 - 1st Quarter: UCN development
 - 2nd Quarter: Beamline, target, shielding installation
- **2016**
 - 1st Quarter: Source install
 - 2nd Quarter: Source commission
 - 3rd Quarter: LD₂ upgrade, Be bottle
- **2017**
 - 1st Quarter: Commission B/L & CN Spring ‘16
- **2018**
 - 1st Quarter: EDM Phase 2
nEDM Phase 1

- use **existing** EDM Ramsey **apparatus** from RCNP, Osaka
- exploit **higher UCN density** at TRIUMF (also more beamtime available)
- room temperature, **1 small cell**, vertical loading, spherical B_0 coil
- small incremental improvements until replaced by Phase 2
 - Active magnetic compensation system
 - high voltage
 - comagnetometer
 - high-flux detector
Phase 2: Cold Moderator Upgrade to LD$_2$

MCNPX Studies:
UCN yield increased by 5-7 when D$_2$O ice replaced by LD$_2$ and heat load on He-II cut in half!

LD$_2$ Cryostat System
- Aluminum Cryostat
- 125 Liquid Litres of D$_2$
- 90 W Heat Load
- Circulate LD$_2$ to remote condenser + cryo-cooler
nEDM Phase 2 – circa 2019?

- Room temperature
- Improvements
 - Higher UCN density with LD$_2$ moderator
 - 2 cells, probably “horizontal” loading
 - Dual Xe/Hg comagnetometer
 - Improved magnetic environment
 - Simultaneous counting of both polarizations
- Sensitivity goal: $d_n < 10^{-27} \text{ e} \cdot \text{cm}$

- Ongoing extensive R&D program
 - Magnetic fields
 - UCN detector
 - Comagnetometer
 - HV/EDM cell
 - Simulations

Possible topology

- Magnetically shielded room
- Inner passive shielding
- EDM cell(s)
- HV feed
- UCN switch
- SC polarizer
- He-II volume
- Spallation target
- Moderator cryostat
- Protons
- 2.5 m
- 4 UCN detectors
- Spin flipper/Analyzer
Canadian EDM R&D

Magnetic environment
- active shielding
- passive shielding
- creation of stable, homogeneous B fields
- Precision atomic magnetometry and SQUIDs

UCN detection
- Need faster detectors
- Li glass scintillators + lightguide + PMTs
- Test run in August 2015 at PSI
- R&D towards dual detectors which count both spin states simultaneously.

\[n^+\text{Li} \rightarrow ^3\text{H} \ (2.74 \text{ MeV}) + ^4\text{He} \ (2.05 \text{ MeV}) \]

Dual Co-magnetometer
- Hg, Xe polarisation
- laser development
- 2-photon transition requires development of intense CW UV lasers.
- Xe EDM measurement

Electric field, UCN cell
- dielectric strength of Xe at \(10^{-3}\) mbar unknown
- 50x100 mm cylindrical test cell
- gas breakdown studies
- material studies
Long-Range Plan

• **2017-2021**: improvements to UCN source and nEDM experiment
 – 2017-2018 CFI proposal for major upgrade to UCN source and nEDM experiment ($12M) leveraged by Japan support and TRIUMF 5YP support ($1.6M)
 – NSERC support ~$800k/yr (presently ~$500k/yr)

• **2022-2026**: development of facility and other UCN experiments
 – Neutron lifetime in a magnetic trap
 – Neutron gravity levels
 – Cost scale ~$5M/expt. Expect new international users and support for these experiments.
Summary

• UCN source testing (RCNP) and installation of beamline components (TRIUMF) proceeding on schedule.

• R&D progress for the neutron EDM experiment.

• Phase I nEDM operating by 2016-17

• Phase II application aiming at sub-10^{-27} e-cm precision planned for 2017-18.
More info and backups
Recent achievements

• Recent publications on magnetic field R&D and UCN detector (see our draft brief)
• Recent MSc theses (several MSc and PhD in progress) (see draft brief)
• Conference proceedings/presentations (most recent one is Larry Lee at SSP2015, Victoria, BC, several others this week at CAP)
• Facility, installation at TRIUMF (see this talk and Larry’s talk at SSP)
Example nEDM R&D achievement:

Precision atomic magnetometry with Rb

- Magnetometer at 20 fT precision!
- (Your brain thinking ~ 1000 fT)
- Shielding factor = 1.3×10^7 couldn’t have been measured with any other magnetometer.

Optical rotation sees shielded field and calibration field

Wolfgang Klassen (UM/UW) installing external coils.

± 475 fT applied internally (calibration)

± 1.45 uT applied externally

NSERC Faculty Research FTE’s

- This is list expected for our next renewal April 2015
- Also ~4 Japan faculty FTE’s
- Expect 1-2 more Canadians to join over next 5YP period, and some Japanese
- More international users once facility is operational and time can be dedicated to other experiments (2022-)

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>FTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Bidinosti</td>
<td>U. Winnipeg</td>
<td>0.4</td>
</tr>
<tr>
<td>J. Birchall</td>
<td>U. Manitoba</td>
<td>0.3</td>
</tr>
<tr>
<td>M. Gericke</td>
<td>U. Manitoba</td>
<td>0.1</td>
</tr>
<tr>
<td>B. Jamieson</td>
<td>U. Winnipeg</td>
<td>0.5</td>
</tr>
<tr>
<td>D. Jones</td>
<td>UBC</td>
<td>0.3</td>
</tr>
<tr>
<td>A. Konaka</td>
<td>TRIUMF</td>
<td>0.2</td>
</tr>
<tr>
<td>E. Korkmaz</td>
<td>UNBC</td>
<td>0.3</td>
</tr>
<tr>
<td>T. Lindner</td>
<td>TRIUMF/U. Winnipeg</td>
<td>0.1</td>
</tr>
<tr>
<td>K. Madison</td>
<td>UBC</td>
<td>0.3</td>
</tr>
<tr>
<td>J. Mammei</td>
<td>U. Manitoba</td>
<td>0.1</td>
</tr>
<tr>
<td>R. Mammei</td>
<td>U. Winnipeg</td>
<td>0.9</td>
</tr>
<tr>
<td>J. Martin</td>
<td>U. Winnipeg</td>
<td>0.8</td>
</tr>
<tr>
<td>T. Momose</td>
<td>UBC</td>
<td>0.3</td>
</tr>
<tr>
<td>W. van Oers</td>
<td>U. Manitoba/TRIUMF</td>
<td>0.3</td>
</tr>
<tr>
<td>S. Page</td>
<td>U. Manitoba</td>
<td>0.1</td>
</tr>
<tr>
<td>R. Picker</td>
<td>TRIUMF</td>
<td>1.0</td>
</tr>
<tr>
<td>J. Sonier</td>
<td>SFU</td>
<td>0.1</td>
</tr>
<tr>
<td>Joint Position</td>
<td>TRIUMF/U. Winnipeg</td>
<td>0.9</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>7.0</td>
</tr>
</tbody>
</table>
Full Collaboration List (06/2015)

T. Adachi¹, E. Altiere², T. Andalib³, C. Bidinosti³, J. Birchall⁴, M. Chin⁵, C. Davis⁵, F. Doresty⁴, M. Gericke⁴, S. Hansen-Romu³, K. Hatanaka⁶, B. Jamieson³, S. Jeong¹, D. Jones², K. Katsika⁵, S. Kawasaki¹, T Kikawa⁵, A. Konaka⁵, E. Korkmaz⁷, M. Lang³, T. Lindner⁵, L. Lee⁴, K. Madison², J. Mammei⁴, R. Mammei³, J.W. Martin³, Y. Masuda¹, R. Matsumiya⁶, K. Matsuta⁸, M. Mihara⁸, E. Miller², T. Momose², S. Page⁴, R. Picker⁵, E. Pierre⁶, W.D. Ramsay⁵, L. Rebenitsch³, J. Sonier⁹, I. Tanihata⁶, W.T.H. van Oers⁴, Y. Watanabe¹, and J. Weinands²

¹KEK, Tsukuba, Ibaraki, Japan
²The University of British Columbia, Vancouver, BC, Canada
³The University of Winnipeg, Winnipeg, MB, Canada
⁴The University of Manitoba, Winnipeg, MB, Canada
⁵TRIUMF, Vancouver, BC, Canada
⁶RCNP, Osaka, Japan (Osaka University, Osaka, Japan)
⁷The University of Northern BC, Prince George, BC, Canada
⁸Osaka University, Osaka, Japan
⁹Simon Fraser University, Burnaby, BC, Canada

Grad students highlighted in red
Typically 8-10 undergraduates per year (not listed)

More collaborators always welcome:
- nEDM R&D, future UCN source R&D, future experiments R&D