Producing Medical Isotopes with Electron Linacs

Presentation to 2015 CAP Congress

By

Mark de Jong (Canadian Light Source Inc.) 2015 June 16

The Goal: 99mTc

^{99m}Tc:

- •140 keV γ -ray, 6 hr half life
- Used for ~80 % of nuclear medicine diagnostic imaging
- Canada about 5500 procedures per day

Current Production Method

Current Production Method

Mo-99 via U-235 fission:

- Mo-99 at peak of fission mass distribution
- ~ 6 % of fissions yield Mo-99
- Half life of 66 hrs

Issues with Current Production Method

- Major production reactors are old, with growing availability issues
 - No shut-down should be longer than 4 days!
 - Two major shut-downs at NRU, and similar issues at HFR
 - NRU scheduled for permanent shut-down in 2018
- Most current production uses highly enriched ²³⁵U (HEU)
 - Nuclear proliferation concerns
 - Significant on-going "consumption" of HEU
 - Significant accumulation of high-level fission waste
- Conversion to LEU an option but:
 - Lower efficiency
 - More waste
 - Significant cost increase likely
- Major producing countries (e.g., Canada and Netherlands) not willing to continue to subsidize production for use in other countries

NRCan NISP Program for Accelerator Production 99Mo / 99mTc

- Non-reactor-based Isotope Supply Program (NISP)
 - announced 2010 June 2 ended 2012 March 31
 - \$35M total funds available
 - Demonstrate feasibility of "commercial-scale" production
 - Two approaches funded:
 - Proton cyclotron production of ^{99m}Tc using ¹⁰⁰Mo(p, 2n)
 - Electron linac production of ⁹⁹Mo using ¹⁰⁰Mo(γ, n)
- Four projects funded:
 - two cyclotron-based:
 - ACSI + U of Alberta + U of Sherbrooke
 - TRIUMF/UBC + BC Cancer Agency + Lawson Health Research Institute (U Western Ontario) + CPDC (McMaster U)
 - two linac-based
 - Canadian Light Source Inc. (U of Saskatchewan) + NRC (Ottawa, Montreal)
 - Prairie Isotope Production Enterprise (PIPE)
 - Winnipeg Regional Health Authority + Acsion Industries + U of Winnipeg

NRCan ITAP Program for Accelerator Production 99Mo / 99mTc

- Isotope Technology Acceleration Program (ITAP)
 - announced 2012 June ends 2016 March 31
 - \$25M total funds available to cover up to 65% of expenses
 - Secure Health Canada approval of accelerator-sourced 99mTc
 - Two approaches funded:
 - Proton cyclotron production of ^{99m}Tc using ¹⁰⁰Mo(p, 2n)
 - Electron linac production of ⁹⁹Mo using ¹⁰⁰Mo(γ, n)
- Three projects funded:
 - two cyclotron-based
 - ACSI
 - TRIUMF
 - one linac-based
 - PIPE with CLSI linac production support

Linac Project Team

- Canadian Light Source Inc.
- National Research Council (NRC)
- Winnipeg Health Sciences Centre
- Acsion Industries Ltd.
- University of Winnipeg
- With support from:
 - Mevex Corp.
 - University of Ottawa Heart Institute
 - NorthStar Medical Radioisotopes LLC
 - University Health Network (U of Toronto)
- Project Funding:
 - Natural Resources Canada (NRCan) NISP and ITAP
 - Province of Saskatchewan Crown Investment Corp.
 - Project Team members

Linac Production of 99Mo

- Photo-nuclear reaction on ¹⁰⁰Mo:
 - ¹⁰⁰Mo (γ, n) ⁹⁹Mo
- Natural Mo is 9.63% ¹⁰⁰Mo
- Available with enrichments of > 95 %
- Known for more than 40 years
- Photons produced via
 Bremsstrahlung using high-energy
 electrons from linear accelerator ⇒
 high-energy X-rays

Exploit "giant dipole resonance" around 15 MeV in most heavy nuclei

Photon Shower (EGS++)

Electrons and photons above 14 MeV shown

Why Electron Linacs?

Disadvantages:

- Lower cross-sections (electromagnetic vs nuclear interactions)
- Fewer reaction channels, especially for positron emitters
- More difficult to make carrier-free radio-isotopes

Advantages:

- Photons are more penetrating => thicker targets, windows
- Photons are "cheap"
- Electron linacs are generally simpler and more reliable (compared to cyclotrons)
- Fewer reaction channels
 - Fewer undesired isotopes
 - Less radioactive waste

Relatively unexplored option!

- Few low-energy research electron linacs still operating
- Most are low current / power except for industrial linacs below 10 MeV

Reaction Channels

- Arrows show (γ, n) reactions on Mo isotopes
- (γ, p) produces Nb isotopes which decay to Mo

(9/2)+	U+	5/2+	U+	5/2+	UŦ	3/2+	UŦ	5/2+	UŦ	3/2+
C	EC	EC	5.52		1.88	12.7	12.6	17.0	31.6	β-
Tc92	Tc93	Tc94	Tc95	Tc96	Tc97	Tc98	Tc99	Tc100	Tc101	Tc102
4.23 m	2.75 h 9/2+	293 m 7+	20.0 h 9/2+	4.28 d 7+	2.6E6 y	4.2E+6 y	2.111E+5 y 9/2+	15.8 s 1+	14.22 m	5.28 s 1+
(8)+	*	*	*	*	9/2+	(6)+	*		(9/2)+	
С	EC	EC	EC	EC	EC	β-	β-	β-	β-	β-
Mo91	Mo92	Mo93	Mo94	Mo95	Mo96	Mo97	Mo98	Mo99	Mo100	Mo10:
15.49 m	0+	4.0E+3 y 5/2	0	5/2	0+	5/2+	- O.L	65.94 h 1/2	1.2E19 y 0+	14.61 m 1/2+
*	- 0.			31		SIZI			β-β-	
С	14.84	EC	9.25	15.92	16.68	9.55	24.13	β-	9.63	β-
Nb90	Nb91	Nb92	Nb93	Nb94	Nb95	Nb96	Nb97	Nb98	Nb99	Nb100
14.60 h	680 y	3.47E+7 y	0/2	2.03E+4 y	34.975 d	23.35 h	72.1 m	2.86 s	15.0 s	1.5 s
8+	9/2+	(7)+	9/2+	(6)+	9/2+	6+	9/2+	1+ *	9/2+	1+
C	EC	EC,β-	100	β-	β-	β-	β-	β-	β-	β-
Zr89	Zr90	Zr91	Zr92	Zr93	Zr94	Zr95	Z r96	Z r97	Zr98	Z r99
78.41 h				1.53E+6 y		64.02 d	3.9E19 y	16.91 h	30.7 s	2.1 s
9/2+	0+	5/2+	0+	5/2+	0+	5/2+	0+ β-	1/2+	0+	(1/2+)
С	51.45	11.22	17.15	β-	17.38	β-	2.80	β-	β-	β-
Y88	Y89	Y90	Y91	Y92	Y93	Y94	Y95	Y96	Y97	Y98
106.65 d		64.10 h	58.51 d	3.54 h	10.18 h	18.7 m	10.3 m	5.34 s	3.75 s	0.548 s
4- *	1/2-	2-	1/2-	2-	1/2-	2-	1/2-	0-	(1/2-) *	(0)-
C	100	ß-		ß-	ß-	ß-	β-	ß-	β-n	β-n

Linac Project Scope - 1

- Develop a fabrication method for ¹⁰⁰Mo targets (NRC and Acsion)
- Low-power testing (< 2 kW) of ¹⁰⁰Mo target to validate production yield estimates (done at NRC in Ottawa)
 - Evaluate the quality of the ⁹⁹Mo produced and the ^{99m}Tc separation process, performed by Radiopharmaceutical Research Group at HSC
- Development of a suitable recycling process to recover the ¹⁰⁰Mo after irradiation and ^{99m}Tc separation for future targets (NRC and Acsion)

NRC (Ottawa) - INMS

-Proof-of-concept work using 35 MeV, 3 kW linac at INMS

Linac Project Scope - 2

- Install 35 MeV, 40 kW, linac in an existing underground experimental hall at CLS
 - Linac based on industrial high-power systems developed by Mevex
 - Design & build bremsstrahlung converter and Mo target system
 - must handle > 30 kW beam power
 - design remote handling system for loading shipping casks
- Develop nuclear substance laboratory for target manufacture and recycling production facility for ¹⁰⁰Mo targets
 - Targets are sintered disks of molybdenum metal powder
 - 15 mm dia x 1 mm thick, ~ 85 90 % maximum density
 - 100Mo is ~95 97% enrichment, primarily for yield
- Irradiated targets are shipped to Winnipeg HSC for ⁹⁹Mo dissolution and ^{99m}Tc extraction
 - HSC takes the lead on preparation of NDA for linac-sourced
 99mTc to submit for Health Canada approval

Isotope Linac and Target Assembly

Linac Isotope Production Facility

Targets and Remote Handling

Mo target disks

Shipping Cask

Target Holder with 9 disks

Remote handling facility

LINAC 99Mo Shipment

The Medical Isotope Project's particle accelerator shoots high-energy X-rays at molybdenum:100, even here. Th X-rays knock out a neutron to create molybdenum-99, which decays into the medically useful isotope technetium:09m. (Uavid Stabbe / Stabbe Mhotography)

99Mo Processing

- Dissolution goal is within 1hr, then drying
- Tested solvents HCl acid, HNO₃-H₂SO₄ acid, HNO₃ acid, HNO₃ + HF acid
- Studied influence of heating on dissolutions
- Very efficient dissolution in 30% hydrogen peroxide
- Final dissolution in 5M NaOH is instant
- Time limiting step is Mo drying (~ 1 hr) –important for H₂O₂ content

Mo99/Tc99m Separation Generator

- Earlier models in used for 2 decades in Winnipeg with fission Mo99
- MEK-5M NaOH separation
- Automated, programmable for scheduled runs
- Fully self-shielded up to 250GBq
- Tc99m is passed through alumina column for final purification
- Tc99m product is terminally sterilized by filtration
- Complete operation, calibration and maintenance user manuals available

99Mo/99mTc Separation Generator

Fig. 3 HPGe spectrum obtained for irradiated natural molybdenum disks at 15 days. The spectrum shows peaks attributable to ⁹⁹Mo (at 140, 180, 366, 739, 777, 822 and 960 keV) as well as impurity peaks

of $^{91\text{m}}$ Nb, $^{92\text{m}}$ Nb, Nb and $^{95\text{m}}$ Nb ($t_{1/2}=60.86$ days, 10.15 days, 86.6 h, 35.15 days, respectively)

Fig. 4 Spectra obtained for the ^{99m}Tc-pertechnetate from the solvent generator. Only peaks attributable to ^{99m}Tc are seen, ^{99m}Tc radionuclidic purity even after 24 h (when longer-lived impurities would have shown increased prominence)

Extraction Efficiency vs Specific Activity

Evaluations and Licensing

- Radiopharmaceuticals prepared:
 - Tc99m-Pertechnetate
 - Tc99m-MDP
 - Tc99m-Sestamibi
 - Tc99m-DTPA
 - Tc99m-Tetrofosmin*
- Pharmacopeial QC testing parameters and standards
- Stability studies over the useful life of radiopharmaceutical as per product monograph, up to 24 hr

Summary Licensing

 LINAC-sourced, solvent generator separated Tc99m sodium pertechnetate meets USP requirements for comparable SA neutron-capture produced Tc99m

 Solvent generator separated Tc99m sodium pertechnetate meets USP specifications for impurities MEK

Current Status

- Started linac operations in August 2014
 - Trial irradiations from October 2014 through February 2015
 - 6 natural molybdenum disks in each trial
 - 3.5 GBq and 2.83 GBq (~48 h at 10 kW)
 - 1.86 GBq (~24 h at 10 kW)
 - All measurements in Winnipeg at ~36 h after EOB
 - Weekly shipments since mid-April 2015
 - 9 natural molybdenum disks, 72h at 15 kW
 - 21.9 ± 1.2 GBq delivered per run ⇒ 34.0 GBq average at EOB
 - All measurements in Winnipeg at ~40 h after EOB
 - Plan to switch to ¹⁰⁰Mo targets in July 2015
 - ~100 to 300 GBq per shipment using ¹⁰⁰Mo targets
- Ultimately, production will be sufficient to support the provinces of Manitoba and Saskatchewan (population ~2.25M)

Future Plans

- Perform animal SPECT-CT studies and clinical trials to support Health Canada approval
- Complete new GMP-compliant processing and distribution facility in Winnipeg
- Optimize the 100Mo target recycling and logistics
- Examine commercial feasibility of national production using two to four 100kW electron linacs, each with multiple target stations
- Explore production possibility for other isotopes
- Explore international commercial opportunities for technology

