Status of Long-Baseline Neutrino Experiments

Nick Hastings

2015 CAP Congress

Nick Hastings (University of Regina)

Outline

Introduction

The T2K Experiment

Overview Oscillation Analyses

The NOvA Experiment

Summary

Nick Hastings (University of Regina)

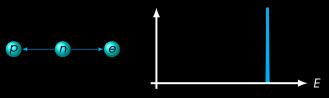
Introduction

The T2K Experiment

Overview

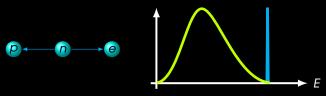
Oscillation Analyses

The NOvA Experiment

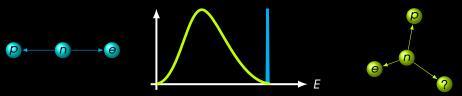

Summary

Nick Hastings (University of Regina)

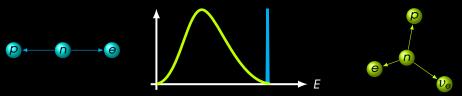
Status of Long-Baseline Neutrino Experiments


2015 CAP Congress 3 / 38

- Spectrum from ``β-decay'' expected to be mono energetic
- Found to be a continuous spectrum
- Not consistent with two body decay


- Pauli postulated an undetected, neutral, 3rd decay product
- Spectrum shape indicated 3rd product had very low mass
- Later, it was identified as a neutrino

- Spectrum from ``β-decay'' expected to be mono energetic
- Found to be a continuous spectrum
- Not consistent with two body decay

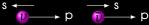

- Pauli postulated an undetected, neutral, 3rd decay product
- Spectrum shape indicated 3rd product had very low mass
- Later, it was identified as a neutrino

- Spectrum from `` β -decay'' expected to be mono energetic
- Found to be a continuous spectrum
- Not consistent with two body decay

- Pauli postulated an undetected, neutral, 3rd decay product
- Spectrum shape indicated 3rd product had very low mass
- Later, it was identified as a neutrino

- Spectrum from `` β -decay'' expected to be mono energetic
- Found to be a continuous spectrum
- Not consistent with two body decay

- Pauli postulated an undetected, neutral, 3rd decay product
- Spectrum shape indicated 3rd product had very low mass
- Later, it was identified as a neutrino


Neutrinos in The Standard Model

Н u C Quarks d b g S Force Carriers 0 $\mathbf{\bullet}$ μ W ve v_{μ} v_{τ} Ζ

- Interact via the weak force: W and Z
- Three neutrino flavours
- Doublets with their charged counterparts

$$W^{+} \rightarrow e^{+} v_{e},$$

$$\rightarrow \mu^{+} v_{\mu},$$

$$\rightarrow \tau^{+} v_{\tau}.$$

• Distinct handedness:

Massless

Neutrinos behaving badly

- But all was not well
- Neutrinos were disappearing

Solar neutrino problem

• Observed Deficit in v_e from the sun

Atmospheric neutrino anomaly

 Deficit in v_µ:v_e ratio of v produced in atmosphere

- Hypothesis: neutrino flavour can change while propagating
- Confirmed by experiment: SNO, Kamland, SK, K2K etc.

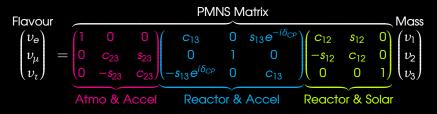
Nick Hastings (University of Regina)

Neutrinos behaving badly

- But all was not well
- Neutrinos were disappearing

Solar neutrino problem

• Observed Deficit in v_e from the sun


Atmospheric neutrino anomaly

 Deficit in v_µ:v_e ratio of v produced in atmosphere

$$v_{\mu} \longrightarrow v_{x\neq e,\mu}$$

- Hypothesis: neutrino flavour can change while propagating
- Confirmed by experiment: SNO, Kamland, SK, K2K etc.

Mixing with Three Neutrino Flavours

where $s_{ij} \equiv \sin \vartheta_{ij}$, $c_{ij} \equiv \cos \vartheta_{ij}$

Solves:

- Solar neutrino problem: Observed deficit of v_e from the sun
- Atmospheric anomaly: Observed deficit of v_{μ} from atmosphere
- 3 mixing angles, 2 mass differences
- 1 CP violating complex phase: difference in v and \bar{v} oscillations
- Is there CP violation in the neutrino sector?

Why does matter dominate over anti-matter in the Universe?

Nick Hastings (University of Regina)

Oscillations with a v_{μ} beam

Leading order:

$$P_{\nu_{\mu} \to \nu_{\mu}} \simeq 1 - \sin^2 2 \vartheta_{23} \sin^2 \Phi_{32}$$

$${\cal P}_{
u_{\mu}
ightarrow
u_{arepsilon}}\simeq\sin^22artheta_{13}\sin^2artheta_{23}\sin^2\Phi_{32}$$

Have measured

•
$$|\Delta m_{32}^2| = (2.44 \pm 0.06) \times 10^{-3} \text{ eV}^2$$

•
$$\sin^2 2\vartheta_{23} = 1.000^{+0.000}_{-0.017}$$

• $\sin^2 2 \vartheta_{13} = 0.093 \pm 0.008$

Where:

$$\Phi_{ij} \equiv \frac{\Delta m_{ij}^2 L}{4E}$$

Oscillations with a v_{μ} beam

Looking at higher order terms:

$$P_{\nu_{\mu} \to \nu_{\mu}} \simeq 1 - (\cos^4 \vartheta_{13} \sin^2 2\vartheta_{23} + \sin^2 2\vartheta_{13} \sin^2 \vartheta_{23}) \sin^2 \Phi_{32} + \dots$$

$$\begin{split} P_{\nu_{\mu} \to \nu_{\theta}} &\simeq \sin^2 2 \vartheta_{13} \sin^2 \vartheta_{23} \sin^2 \Phi_{32} \\ &- \frac{\sin 2 \vartheta_{12} \sin 2 \vartheta_{23}}{\sin 2 \vartheta_{13}} \sin \Phi_{21} \sin^2 2 \vartheta_{13} \sin^2 \Phi_{31} \sin \delta_{CP} + \dots \end{split}$$

New possibilities:

- $\sin^2 \vartheta_{23} \Rightarrow \text{octant information}?$
- $\sin \delta_{CP} \Rightarrow CP$ violation?
- Sign of Δm^2_{32} ? Is $m_3 > m_2$?

"Normal Hierarchy" vs "Inverted Hierarchy"

Nick Hastings (University of Regina)

Status of Long-Baseline Neutrino Experiments

Where:

$$\Phi_{ij} \equiv \frac{\Delta m_{ij}^2 L}{4E}$$

The T2K Experiment

Introduction

The T2K Experiment

Overview Oscillation Analyses

The NOvA Experiment

Summary

Nick Hastings (University of Regina)

Status of Long-Baseline Neutrino Experiments

2015 CAP Congress 9 / 38

The T2K Experiment Overview

Tokai To Kamioka: "T2K"

Produce v_{μ} beam at J-PARC and detect at Super-K

Discovery of $v_{\mu} \rightarrow v_{e}$ oscillation \checkmark

Phys. Rev. Lett. 112, 061802 (2014)

Precision measurement of v_{μ} disappearance \checkmark

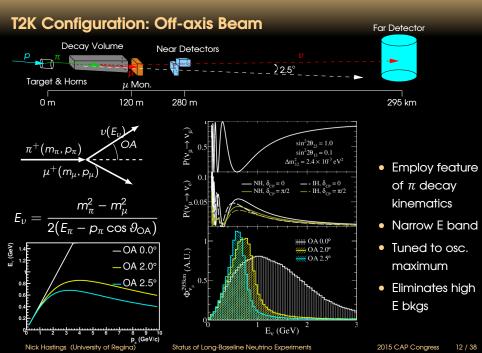
Phys. Rev. Lett. 112, 181801 (2014)

Time to start looking at the more subtle questions

Nick Hastings (University of Regina)

How to make an neutrino beam

- Protons strike a target producing many pions
- Pions pass through ``Horn'' electromagnets
- Focusing π^+ , deflecting π^-
- Charged pions decay to muons and muon type neutrinos:

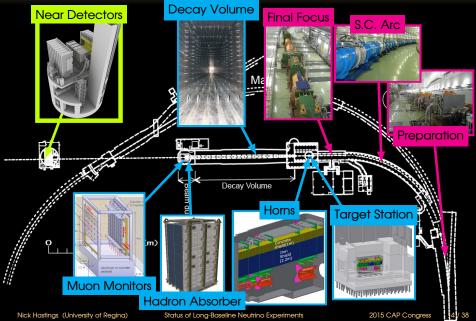

$$\pi^+ o \mu^+ +
u_\mu$$

• Reverse Horn Current (RHC) to focus π^- to switch from v to \bar{v} beam

$$\pi^- \to \mu^- + \bar{\nu}_\mu$$

Nick Hastings (University of Regina)

Overview

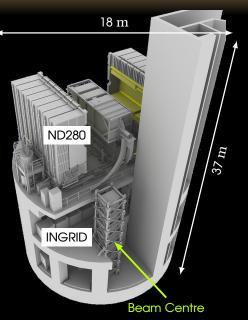


Tokai Site

Nick Hastings (University of Regina)

Tokai Site

Near Detectors


Pit 280 m from the target.

Off Axis

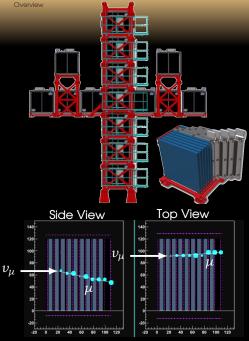
- ``ND280''
- Flux in SK direction
- v cross sections

On Axis

- ``INGRID''
- v_{μ} beam
 - profile
 - direction
 - intensity

On Axis Detector - INGRID

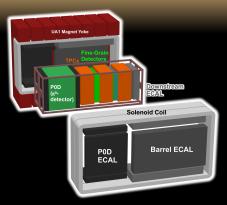
Design

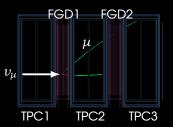

- 14 modules in cross arrangement
- $10 \text{ m} \times 10 \text{ m}$
- Iron scintillator sandwich

Provides

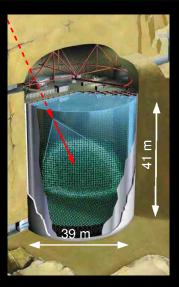
- Beam parameters
- Rate, direction and profile measurements

Note:

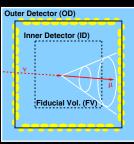

$$\Delta \vartheta \simeq 1 \operatorname{mrad} \Rightarrow \Delta E_{peak} \simeq 20 \operatorname{MeV}$$



Off Axis Detector - ND280

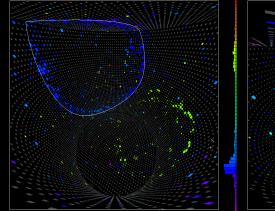

Design

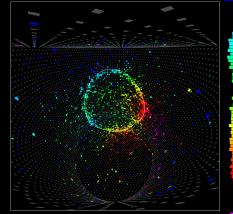
- UA1 magnet, B=0.2 T
- Tracker
 - Time projection chambers (TPCs)
 - Fine Grained Detectors (FGDs): Tracking and target material (scintillator and water)
- π^0 detector (P0D)
- Electromagnetic calorimeter (ECAL)
- Side muon range detector (SMRD)
- For analyses
 - Measure CC neutrino interactions



Far Detector: Super-Kamiokande

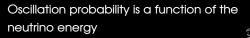
- Cerenkov light from charged leptons from v interactions
- Use PMT pulse height & timing information
- Fit PMT hits to cone
 - \Rightarrow e/ μ momentum & direction

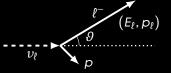

- OD 1885 PMTs: Veto
- ID 11129 PMTs
- FV 22.5 kt
 2 m from ID wall

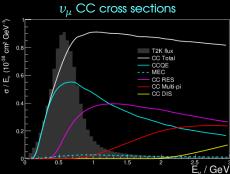

The T2K Experiment Overview

Far Detector: Particle Identification

Muon ``Sharp'' ring

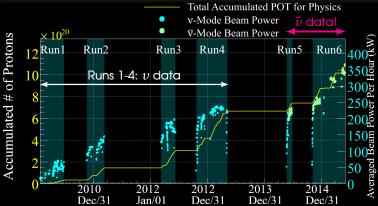

Electron ``Fuzzy'' ring


Excellent μ/e separation


Nick Hastings (University of Regina)

Far Detector: E_{ij} Reconstruction

Charged Current Quasi-Elastic (CCQE), $v_{\ell} + n \rightarrow \ell + p$

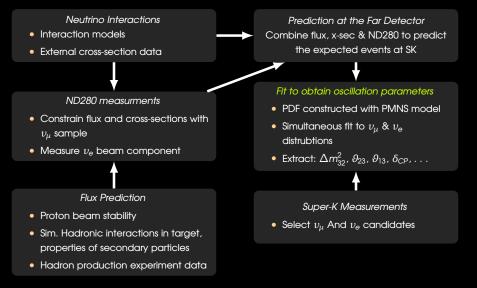


- Charged lepton, $\ell(\mu \text{ or } e)$
- $E_{v}^{\text{rec}} = \frac{m_{p}^{2} m_{n'}^{2} m_{\ell}^{2} + 2m_{n'}E_{\ell}}{2(m_{n'} E_{\ell} + p_{\ell}\cos\vartheta_{\ell})}$ Use energy and timing info. \Rightarrow Calculate: from PMTs
- Fit cone to PMT hits to reconstruct (E_{ℓ}, p_{ℓ}) :

Nick Hastings (University of Regina)

where: $m_{n'} = m_n - E_h$ $E_{\rm p} = 27 \, {\rm MeV}$ (binding energy of nucleon in ¹⁶O nuclei)

T2K Data set

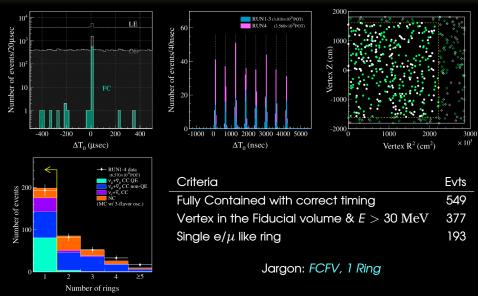


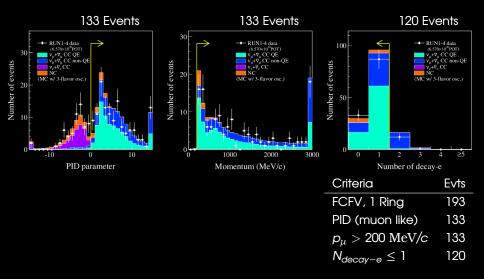
- T2K Run 1-4 data
 - Forward Horn Current (FHC): neutrino mode running
 - 6.57×10^{20} protons on target (POT), 8% of approved data set
- T2K Runs 5&6 data
 - Primarily Reverse Horn Current (RHC): anti-neutrino mode running
 - 4.47×10^{20} protons on target (90% RHC)


Nick Hastings (University of Regina)

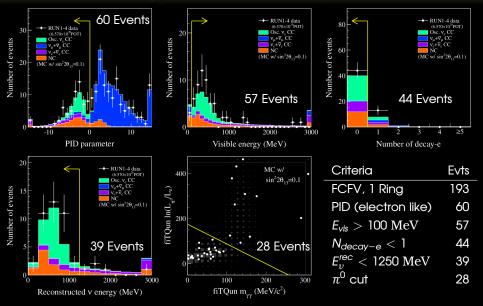
Combined v_{μ} disappearance & v_{e} appearance analysis

"Combined oscillation analysis" with T2K Run 1-4 data set


Beam measurements with INGRID and Muon Monitors

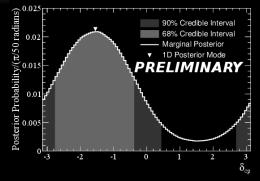

- Normalized daily event rate is stable
- Direction controlled to much better than 1 mrad

Nick Hastings (University of Regina)


T2K Far Detector v event selection

T2K Far Detector v_{μ} event selection

T2K Far Detector v_{e} event selection

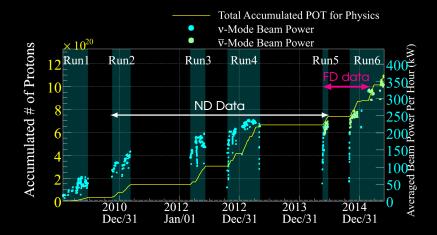

Nick Hastings (University of Regina)

Combined oscillation analysis results

- Simultaneous fit to v_{μ} and v_{e} energy spectra
- Constrain with reactor results
- Extract: Δm^2_{32} , ϑ_{23} , ϑ_{13} , δ_{CP}

Results

- Best fit for $\delta_{CP} \sim -\pi/2$
- Weak preference for m₃ > m₂ and second octant

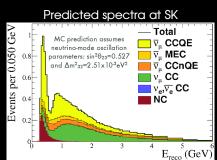


	Probability of Different Models		
	$m_3 > m_2$	$m_3 < m_2$	Sum
$\sin^2artheta_{23} \le 0.5$	17.9%	7.8%	25.7%
$\sin^2artheta_{23}>0.5$	50.5%	23.8%	74.3%
Sum	68.4%	31.6%	100.0%

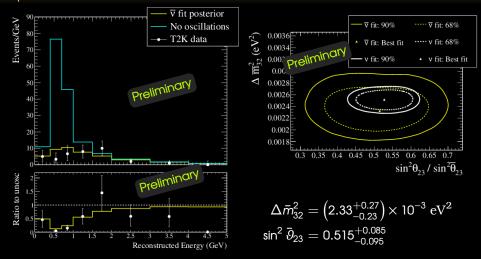
- Constraints with only 8% of approved data set
- Phys. Rev. D 91, 072010 (2015) http://arxiv.org/abs/1502.01550v2

Nick Hastings (University of Regina)

$ar{v}_\mu$ disappearance analysis



- Near Detector $v\&\bar{v}$: Use Runs 2-5
- Far Detector $ar{v}$ data from runs 5&6 till March 12th: 2.32 imes 10²⁰ POT


Nick Hastings (University of Regina)

$ar{v}_\mu$ disappearance analysis

- Select single ring muon events at SK from RHC data
- Expect 19.9 events with oscillation, 59.8 without
- Higher backgrounds than v_{μ} analysis
 - Cross section models and & ND constraints important
 - Use both FHC and RHC data from ND
- Simultaneous fit ND280 and SK distributions

$ar{v}_\mu$ disappearance results

- Results consistent with v_{μ} disappearance
- Errors are statistics dominated

The NOvA Experiment

Introduction

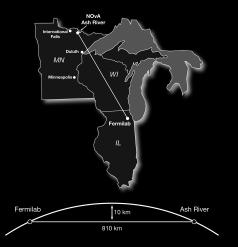
The T2K Experiment

Overview

Oscillation Analyses

The NOvA Experiment

Summary

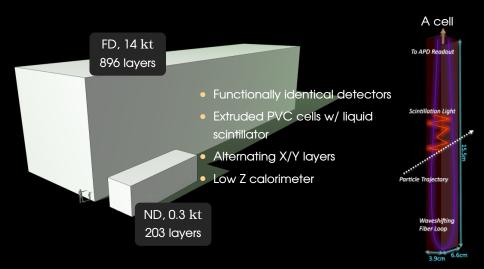

Nick Hastings (University of Regina)

Status of Long-Baseline Neutrino Experiments

2015 CAP Congress 31 / 38

The NOvA Experiment

The NOvA Experiment



- Muon neutrino beam
- OA = 0.8 °, $E_{\text{peak}} = 2 \text{ GeV}$, L = 810 km
- E/L tuned to be close to osc max
- Uses the NuMI beamline at Fermilab
- Far detector at Ash River
- Complimentary to T2K w/ slightly better sensitivity to mass hierarchy

The NOvA Experiment

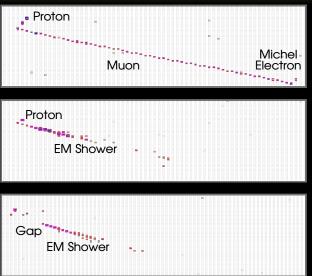
Detectors Design

Nick Hastings (University of Regina)

Detector Halls

Near Detector

Far Detector (during installation)



Nick Hastings (University of Regina)

Status of Long-Baseline Neutrino Experiments

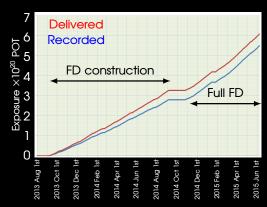
2015 CAP Congress 34 / 38

Simulated Events

$$N + v_{\mu} \rightarrow X + \mu^{-}$$

$$N + v_e \rightarrow X + e^-$$

$$N + v_{\mu} \rightarrow X + \pi^0 + v_{\mu}$$


Excellent event identification

Nick Hastings (University of Regina)

Data logging and plans

- Logging data since 2013
- Developing Analyses
- To release v_{μ} disappearance and v_{e} appearance results this Summer
- Expect about 2.5 × 10²⁰ POT (full dectector equivalent)
- Corresponds to about 40% of a standard running year
- Current data set expect v_e:
 S ~ 4.3, B ~ 1.3

Far Detector Exposure

Summary

Outline

Introduction

The T2K Experiment

Overview

Oscillation Analyses

The NOvA Experiment

Summary

Nick Hastings (University of Regina)

Status of Long-Baseline Neutrino Experiments

2015 CAP Congress 37 / 38

Summary

- Long baseline neutrino oscillation experiments are an effective tool for investigating the neutrino sector.
- The T2K experiment:
 - Has achieved its initial goals:
 - Discovered $v_{\mu} \rightarrow v_{e}$ and precision v_{μ} disappearance measurements.
 - First results for the remaining questions:
 - Is there CP violation? What is the mass hierarchy?
 - First preliminary $\bar{\nu}_{\mu}$ disappearance results.
 - Will continue to refine these measurements.
- The NOvA experiment:
 - Has been logging data for over a year.
 - Developing analyses.
 - Expecting first results this Summer.

Looking forward to many new results over the coming years.

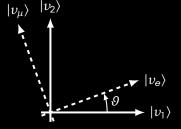
Supplementary Material

Supplementary Material

Nick Hastings (University of Regina)

Neutrino Mixing

- Neutrino flavour states exist as superposition of mass states
- Consider a two neutrino system (instead of three) for simplicity Flavour states:


$$\begin{split} |v_{e}\rangle &= \cos \vartheta |v_{1}\rangle + \sin \vartheta |v_{2}\rangle \\ |v_{\mu}\rangle &= -\sin \vartheta |v_{1}\rangle + \cos \vartheta |v_{2}\rangle \end{split}$$

As matrix equation:

$$\begin{pmatrix} v_{e} \\ v_{\mu} \end{pmatrix} = \begin{pmatrix} \cos\vartheta & \sin\vartheta \\ -\sin\vartheta & \cos\vartheta \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}$$

• Allows mixing between v_e and v_μ

Time Evolution of v_{μ}

$$egin{aligned} |v_{\mu}(t=0)
angle = |v_{\mu}
angle = -\sinartheta|v_{1}
angle + \cosartheta|v_{2}
angle \ |v_{\mu}(t)
angle = -\sinartheta|v_{1}
angle e^{-i\mathcal{E}_{1}t} + \cosartheta|v_{2}
angle e^{-i\mathcal{E}_{2}t} \end{aligned}$$

Where:

$$E_i = \sqrt{p^2 + m_i^2} = p \sqrt{1 + \frac{m_i^2}{p^2}} \simeq p + \frac{1}{2} \frac{m_i^2}{p}$$

Leading terms from binomial expansion since $\frac{m_l^2}{\rho^2} \ll 1$.

Next, let:

$$\Delta m^2 = m_1^2 - m_2^2$$
 and $e^{-iz} = e^{-i\left(p + rac{1}{2} rac{m_1^2}{p}
ight)}$

So now we have:

$$|
u_{\mu}(t)
angle = e^{-iz} \left(-\sinartheta|
u_{1}
angle + \cosartheta|
u_{2}
angle e^{+i\left(rac{1}{2}rac{\Delta_{m}^{2}}{p}
ight)t}
ight)$$

Nick Hastings (University of Regina)

Oscillation $v_{\mu} \rightarrow v_{e}$

$$P(v_{\mu} \to v_{e}) = |\langle v_{e} | v_{\mu} \rangle|^{2} = \left| e^{-iz} \left(-\sin\vartheta\cos\vartheta + \sin\vartheta\cos\vartheta e^{\frac{j}{2}\frac{\Delta m^{2}}{p}t} \right) \right|^{2}$$
$$= e^{+iz} e^{-iz} \sin^{2}\vartheta\cos^{2}\vartheta \left(-1 + e^{\frac{j}{2}\frac{\Delta m^{2}}{p}t} \right) \left(-1 + e^{-\frac{j}{2}\frac{\Delta m^{2}}{p}t} \right)$$

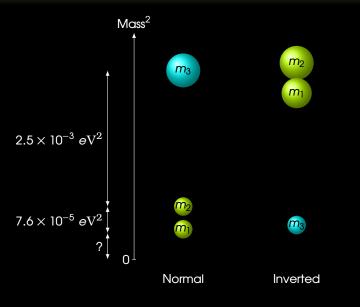
Highly relativistic can substitute p = E and t = L, and remembering our trig, identities crunch it through:

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \frac{1}{2} \sin^{2} 2\vartheta \left(1 - \cos\left(\frac{\Delta m^{2}L}{2E}\right)\right)$$
$$= \sin^{2} 2\vartheta \sin^{2}\left(\frac{\Delta m^{2}L}{4E}\right)$$
$$= \sin^{2} 2\vartheta \sin^{2}\left(\frac{1.27(\Delta m^{2}/eV^{2})(L/km)}{E/GeV}\right)$$

Nick Hastings (University of Regina)

Oscillation $v_{\mu} \rightarrow v_{e}$

$$P(v_{\mu} \to v_{e}) = |\langle v_{e} | v_{\mu} \rangle|^{2} = \left| e^{-iz} \left(-\sin\vartheta\cos\vartheta + \sin\vartheta\cos\vartheta e^{\frac{i}{2}\frac{\Delta m^{2}}{p}t} \right) \right|^{2}$$
$$= e^{+iz} e^{-iz} \sin^{2}\vartheta\cos^{2}\vartheta \left(-1 + e^{\frac{i}{2}\frac{\Delta m^{2}}{p}t} \right) \left(-1 + e^{-\frac{i}{2}\frac{\Delta m^{2}}{p}t} \right)$$


Highly relativistic can substitute p = E and t = L, and remembering our trig, identities crunch it through:

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{\theta}) = &\frac{1}{2} \sin^{2} 2\theta \left(1 - \cos \left(\frac{\Delta m^{2}L}{2E} \right) \right) & \text{First maximum at:} \\ = &\sin^{2} 2\theta \sin^{2} \left(\frac{\Delta m^{2}L}{4E} \right) & \frac{L}{E} = \frac{2\pi}{\Delta m^{2}} \\ = &\sin^{2} 2\theta \sin^{2} \left(\frac{1.27(\Delta m^{2}/\text{eV}^{2})(L/\text{km})}{E/\text{GeV}} \right) & \frac{L/\text{km}}{E/\text{GeV}} = \frac{1.24}{\Delta m^{2}/\text{eV}^{2}} \end{split}$$

Nick Hastings (University of Regina)

Supplementary Material Neutrino Mass Hierarchy

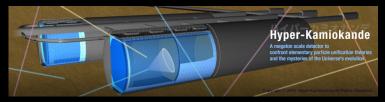
Neutrino Mass Hierarchy

Near Detectors

ND280

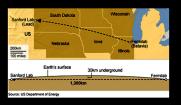
South side open

INGRID



Vertical modules

Nick Hastings (University of Regina)


Hyper-K

- New water Cerenkov detector at Kamioka
- 25 times fiducial volume of SK
- Extend proton decay search
- Existing J-PARC neutrino beamline with 750 kW beam
- New water Cerenkov ``Spectrometer'' near detector ``NuPrism''
- Determine δ_{CP} to better than 19 $^{\circ}$
- Expected to start taking data ~ 2025

DUNE

- New beamline at Fermilab (use main injector like NuMI beamline)
- Accelerator upgrades to achieve 1.2 MW beam (c.f. 700 kW for NO ν A)
- 1300 km baseline
- Optimized for studying CP violation and determining the mass hierarchy
- Multi component magnetized near detector
 - Tracker in magnet field
 - Calorimeters
 - Embedded water, argon, and other targets
- New 10 kt (minimum) LArTPC far detector at Homestake (Stanford Lab)
- Expected to start taking data \simeq 2023

DUNE

$\mathbf{P}(v_{\mu} \rightarrow v_{e})$ with matter effect

$$P(v_{\mu}
ightarrow v_{e}) = P_{0} + P_{\sin \delta} + P_{\cos \delta} + P_{3}$$

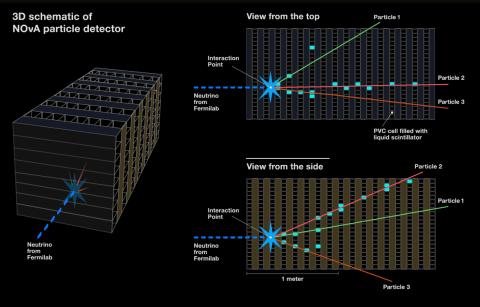
where

$$P_{0} = \sin^{2} \vartheta_{23} \frac{\sin^{2} 2\vartheta_{13}}{(A-1)^{2}} \sin^{2}[(A-1)\Delta],$$

$$P_{3} = a^{2} \cos^{2} \vartheta_{23} \frac{\sin^{2} 2\vartheta_{12}}{A^{2}} \sin^{2}(A\Delta),$$

$$P_{\sin\delta} = a \frac{8J_{CP}}{A(1-A)} \sin\Delta\sin(A\Delta) \sin[(1-A)\Delta],$$

$$P_{\cos\delta} = a \frac{8J_{CP} \cot\delta_{CP}}{A(1-A)} \cos\Delta\sin(A\Delta) \sin[(1-A)\Delta]$$


and where

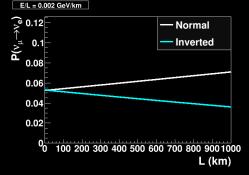
$$\Delta = \Delta m_{31}^2 L/4E, \quad A = \sqrt{3}G_F N_e 2E/\Delta m_{31}^2, \quad a = |\Delta m_{21}^2|/|\Delta m_{31}^2|,$$

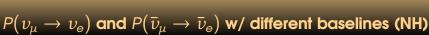
$$J_{CP} = \frac{1}{8}\sin 2\theta_{12}\sin 2\theta_{13}\sin 2\theta_{23}\cos \theta_{13}\sin \delta_{CP}.$$

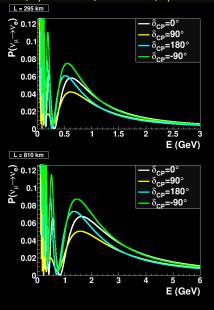
Nick Hastings (University of Regina)

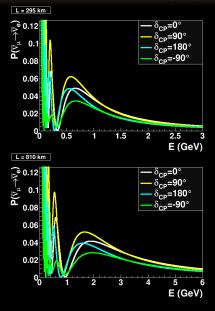
Supplementary Material NOvA Detectors Design

NOvA Detectors Design


Nick Hastings (University of Regina)


Determining Mass Hierarchy


- Matter effect enhances/decrease osc. amplitude for normal/inverted Hierarchy.
- Can employ different L's to alter size of matter effect


Example:

- Consider first oscillation max for: $v_{\mu} \rightarrow v_{e}$: E/L = 0.002 GeV/km
- Amplitude of first max changes with, L, and sign of Δm_{13}^2

Nick Hastings (University of Regina)