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Anderson localization


Figure 5: Normalized Wavefunctions for Tight Binding Systems of Frequency 0

degree of curvature. States with low �/t will , however, be represented by
hyperbolae with a large degree of curvature. For an infinitely disordered system
(�/t = 1) the states are no longer represented by hyperbolae, but by “corner”
lines. The consequence of this is that the DOS for infinitely disordered systems
will take on a box distribution. On the other hand the DOS for systems with
low �/t will have very little uniformity; finite �/t will make it impossible to
obtain a uniform DOS. This also explains the emergence of the “bat-ears” from
the �/t = 1 case in Figure 2 as we go from low to high �/t: the “bat-ears” in
Figures 3 and 4 account for greater uniformity in the DOS than what we get
for �/t = 1.

0.6 Anderson-Model System Wavefunctions

0.6.1 Wavefunction Features

After looking at the DOS for Anderson systems we next focused on the system
wavefunctions. To be clear, we looked at wavefunctions of three di↵erent fre-
quencies: 0, 1 and 2. For a given frequency we plotted wavefunctions of systems
with the same 4 disorder strengths: �/t = 0, 1, 4, 16 as given by Figures 5, 6
and 7. In addition, these wavefunctions are normalized and calculated under
periodic boundary conditions. The purpose of doing this was to observe the
e↵ect of disorder on the wave functions in the form of localization.
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which extends 4mm along the z direction. The three-dimensional
autocorrelation of the disordered potential—that is, of the light
intensity—is determined by diffraction from the diffusive plate onto
the atoms’ location22.

Transversely, the correlation function (an ellipse with semi-axis
lengths of 97 mm and 10 mm) is much wider than the atomic matter
wave, and we can therefore consider the disorder as being
one-dimensional for the BEC expanding along the z direction.
Along this direction, the correlation function of the disordered
potential is V 2

R(sin(z/sR)/(z/sR))
2, where the correlation length

sR5 0.266 0.03 mm (61 s.e.m.) is calculated knowing the numer-
ical aperture of the optics, and VR is the amplitude of the disorder.
The corresponding speckle grain size is psR5 0.82 mm. The power
spectrum of this speckle potential is non-zero only for k-vectors
lower in magnitude than a cutoff of 2/sR. The amplitude of the
disorder is directly proportional to the laser intensity22. The cal-
ibration factor is calculated knowing the geometry of the optical
system and the properties of the rubidium-87 atoms.

When we switch off the longitudinal trapping in the presence of
weak disorder, the BEC starts expanding, but the expansion rapidly
stops, in stark contrast with the free expansion case (Fig. 1d inset,
showing the evolution of the root-mean-square width of the
observed profiles). Plots of the density profile in linear (Fig. 1c)
and semi-log (Fig. 1d) coordinates then show clear exponential
wings, a signature of Anderson localization. Our observations are
made in a regime allowing Anderson localization, unlike in the
experiments in refs 19 and 20. First, the disorder is weak enough
(VR/min5 0.12) that the initial interaction energy per atom is rapidly
converted into a kinetic energy of the order of min for atoms in the
wings. This value is much greater than the amplitude of the disor-
dered potential, so there is no possibility of a classical reflection from
a potential barrier. Second, the atomic density in the wings is low
enough (two orders ofmagnitude less than in the initial BEC) that the
interaction energy is negligible in comparison with the atom kinetic
energy. Last, we fulfil the criterion, emphasized in ref. 13, that the
atomic matter wave k-vector distribution be bounded, with a max-
imum magnitude kmax of less than half the cutoff in the power spec-
trum of the speckle disordered potential used here, that is,
kmaxsR, 1. The value of kmax is measured directly by observing the
free expansion of the BEC in the waveguide in the absence of disorder
(seeMethods). For the runs corresponding to Figs 1c, 1d, 2, and 3, we
have kmaxsR5 0.656 0.09 (62 s.e.m.).

An exponential fit to the wings of the density profiles yields the
localization length Lloc, which we can compare to the theoretical
value13

Lloc~
2B4k2max

pm2V 2
RsR (1{kmaxsR)

ð1Þ

valid only for kmaxsR, 1 (m is the atomic mass). To ensure that the
comparison is meaningful, we first check that we have reached a
stationary situation, in which the fitted value of Lloc no longer
evolves, as shown in Fig. 2. In Fig. 3, we plot the variation of Lloc
with the disorder amplitude VR, for the same number of atoms, that
is, the same kmax. The dash–dot line is a plot of equation (1) for the
values of kmax and sR determined as explained above. It shows quite a
good agreement between our measurements and the theoretical pre-
dictions: with no adjustable parameters we obtain the correct mag-
nitude and general shape. The shaded area reflects the envelope of the
dash–dot line when we take into account the uncertainties in sR and
kmax. The uncertainty in the calibration of VR does not appear in
Fig. 3. We estimate it to be no greater than 30%, which does not
affect the agreement between theory and experiment.

An intriguing result of ref. 13 is the prediction of density profiles
with algebraic wings when kmaxsR. 1, that is, when the initial inter-
action energy is great enough that a fraction of the atoms have a
k-vector greater in magnitude than 1/sR, which plays the role of an
effective mobility edge. We investigate this regime by repeating the
experiment with a BEC containingmore atoms (1.73 105 atoms, min/
h5 519Hz), for VR/min5 0.15. Figure 4a shows the observed density
profile in such a situation (kmaxsR5 1.166 0.14 (62 s.e.m.)), and a
log–log plot suggests a power-law decrease in the wings, with an
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Figure 1 | Observation of exponential localization. a, A small BEC
(1.73 104 atoms) is formed in a hybrid trap that is the combination of a
horizontal optical waveguide, ensuring a strong transverse confinement, and
a loose magnetic longitudinal trap. A weak disordered optical potential,
transversely invariant over the atomic cloud, is superimposed (disorder
amplitudeVR low in comparisonwith the chemical potential min of the initial
BEC). b, When the longitudinal trap is switched off, the BEC starts
expanding and then localizes, as observed by direct imaging of the
fluorescence of the atoms irradiated by a resonant probe. In a and b, false-
colour images and sketched profiles are for illustration purposes; they are
not exactly to scale. c, d, Density profiles (red) of the localized BEC one
second after release, in linear (c) and semi-log (d) coordinates. In the inset in
d we display the root-mean-square (rms) width of the profile versus time t,
with (VR? 0) and without (VR5 0) disordered potential. This shows that
the stationary regime is reached after 0.5 s. The diamond at t5 1 s
corresponds to the data shown in c and themain panel of d.Blue lines in c are
exponential fits to the wings, and correspond to the straight blue lines in
d. The narrow central profiles (pink) represent the trapped condensate
before release (t5 0 s).
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Outline


What is thermal equilibrium and how is it reached?



What is many-body localization?



Our work on the Anderson-Hubbard model




What is thermal equilibrium?




What is thermal equilibrium?


At fixed energy and particle number,

all accessible states are equally likely.




How does a system reach equilibrium?




How does a system reach equilibrium?




How does a system reach equilibrium?


non-ergodic




What about isolated quantum systems?

Schrodinger equation linear      no chaotic dynamics



The ergodic hypothesis:



What does the ergodic hypothesis imply in quantum systems?

[Rigol, et al, Nature 452 854 (2008)]


The rest of the system acts as 

a thermal bath for the subsystem.
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hÔitime = hÔiensemble

PAi / e�✏Ai/kBT

where T $ Es



What happens when interactions ���
are added to disordered systems?
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What happens when interactions ���
are added to disordered systems?


3

L as L is increased. If the eigenstates are thermal then
adjacent eigenstates represent temperatures that differ
only by this exponentially small amount, so the expecta-
tion value of Ŝz

i should be the same in these two states
for L → ∞. From Fig. 1, one can see that the differ-
ences do indeed appear to be decreasing exponentially
with increasing L in the ergodic phase at small h, as
expected. [Here and throughout this paper, when we
use logarithms, they are base e (“natural”).] In the lo-
calized phase at large h, on the other hand, the differ-
ences between adjacent eigenstates remain large as L is
increased, confirming that these many-body eigenstates
are not thermal.
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FIG. 1: (Color online) The logarithm of the mean difference
between the local magnetizations in adjacent eigenstates (see
text). The values of the random field h are indicated in the
legend. In the ergodic phase (small h) where the eigenstates
are thermal these differences vanish exponentially in L as L
is increased, while they remain large in the localized phase
(large h).

Thermalization requires the transport of energy. In the
present model with conserved total Ŝz, it also requires
the transport of spin. To study spin transport on the
scale of the sample size L, we consider the relaxation of
an initially inhomogeneous spin density:

M̂1 =
∑

j

Ŝz
j exp (i2πj/L) (3)

is the longest wavelength Fourier mode of the spin den-
sity. Consider an initial condition that is at infinite
temperature, but with a small modulation of the spin
density in this mode, so the initial density matrix is
ρ0 = (1 + ϵM̂ †

1 )/Z, where ϵ is infinitesimal, and Z is
the partition function. The initial spin polarization of
this mode is then

⟨M̂1⟩0 =
∑

n

⟨n|ρ0M̂1|n⟩ =
ϵ

Z

∑

n

⟨n|M̂ †
1M̂1|n⟩ . (4)

If we consider a time average over long times, then
the long-time averaged density matrix ρ∞ is diagonal in
the basis of the eigenstates of the Hamiltonian, since a

generic finite-size system has no degeneracies and the off-
diagonal matrix elements of ρ each time-average to zero.
As a result, the long-time average of the spin polarization
in this mode is

⟨M̂1⟩∞ =
ϵ

Z

∑

n

⟨n|M̂ †
1 |n⟩⟨n|M̂1|n⟩ . (5)

Thus for each many-body eigenstate in each sample we
can quantify how much it contributes to the initial and
to the long-time averaged polarization. We then define
the fraction of the contribution to the initial polarization
that is dynamic and thus decays away (on average) at
long time, as

f (n)
α = 1−

⟨n|M̂ †
1 |n⟩⟨n|M̂1|n⟩

⟨n|M̂ †
1M̂1|n⟩

. (6)

In the ergodic phase, the system does thermalize, so the

initial polarization does relax away and f (n)
α → 1 for L →

∞. In the localized phase, on the other hand, there is

no long-distance spin transport, so f (n)
α → 0 for L → ∞.

In Fig. 2 we show the mean values of f for each L vs.
h. They show the expected behavior in the two phases
(trending with increasing L towards either 1 or 0), and
the phase transition is indicated by the crossover between
large and small f that occurs more and more abruptly
as L is increased.
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FIG. 2: (Color online) The fraction of the initial spin po-
larization that is dynamic (see text). The sample size L is
indicated in the legend. In the ergodic phase (small h) the
polarization decays substantially under the dynamics, while
in the localized phase (large h) the decay is small, and this
distinction gets sharper as L increases.

A qualitatively similar finite-size scaling plot also in-
dicating the phase transition is obtained by examin-
ing the many-body eigenenergy spacings as was done
in Ref. [4], and is shown as Fig. 3. We consider

the level spacings δ(n)α = |E(n)
α − E(n−1)

α |, where E(n)
α

is the many-body eigenenergy of eigenstate n in sam-
ple α. Then we obtain the ratio of adjacent gaps as

r(n)α = min{δ(n)α , δ(n+1)
α }/max{δ(n)α , δ(n+1)

α }, and average
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Many-body localized system does not

act as a thermal bath for a subsystem. 




Measures of many-body localization

Does not thermalize (non-ergodic)

No transport 

Poisson statistics of level spacing

Many conserved local quantities

Localization in Fock space

Discrete local spectrum

Entanglement entropy satisfies area law

Logarithmic growth of the entanglement entropy

Dephasing without dissipation

Memory of initial conditions 
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. . . what about length scale?




The spin Hamiltonian


H =
X

i

hi⌧
z
i +

X

i,j

Jij⌧
z
i ⌧

z
j +

X

i,j,k

Kijk⌧
z
i ⌧

z
j ⌧

z
k + ...

Huse, Nandkishore & Oganesyan,  
PRB 90, 174202 (2014) 
 



Questions


What does the Anderson-Hubbard model look like 

written in terms of spins?











What’s the nature of the spins?



Can we use this to make connections between the

different measures?


H = �t
X

hi,ji,�

(ĉ†i� ĉj� + ĉ†j� ĉi�) +
X

i�

✏in̂i� + U
X

i

n̂i"n̂i#



Why is a spin Hamiltonian ���
always possible���

for Hilbert-space dimension 2n ?

Consider Hilbert-space dimension 4


E1, E2, E3, E4

Ei = c0 + c1�1i + c2�2i + c3�1i�2i

i �1i �2i Ei

1 �1 �1 c0 � c1 � c2 + c3
2 �1 +1 c0 � c1 + c2 � c3
3 +1 �1 c0 + c1 � c2 � c3
4 +1 +1 c0 + c1 + c2 + c3



Constructing a spin Hamiltonian ���
for the 2-site Anderson-Hubbard model


eigenstate ⌧ state
|0i |����i
|m "i ⌧+1 |����i = |+���i
|p "i ⌧+2 |����i = |�+��i
|m #i ⌧+3 |����i = |��+�i
|p #i ⌧+4 |����i = |���+i
|t "i ⌧+2 ⌧+1 |����i = |++��i
|t0i ⌧+4 ⌧+1 |����i = |+��+i
|t #i ⌧+4 ⌧+3 |����i = |��++i
|u1i ⌧+3 ⌧+1 |����i = |+�+�i
|u2i ⌧+3 ⌧+2 |����i = |�++�i
|u3i ⌧+4 ⌧+2 |����i = |�+�+i
|3m "i ⌧+3 ⌧+2 ⌧+1 |����i = |+++�i
|3p "i ⌧+4 ⌧+2 ⌧+1 |����i = |++�+i
|3m #i ⌧+4 ⌧+3 ⌧+1 |����i = |+�++i
|3p #i ⌧+4 ⌧+3 ⌧+2 |����i = |�+++i
|4i ⌧+4 ⌧+3 ⌧+2 ⌧+1 |����i = |++++i

H = �t
X

�(ĉ†1� ĉ2� + ĉ†2� ĉ1�) +
X

�

✏1n̂1� +
X

�

✏2n̂2� + Un̂1"n̂1# + Un̂2"n̂2#
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for the 2-site Anderson-Hubbard model


eigenstate ⌧ state
|0i |����i
|m "i ⌧+1 |����i = |+���i
|p "i ⌧+2 |����i = |�+��i
|m #i ⌧+3 |����i = |��+�i
|p #i ⌧+4 |����i = |���+i
|t "i ⌧+2 ⌧+1 |����i = |++��i
|t0i ⌧+4 ⌧+1 |����i = |+��+i
|t #i ⌧+4 ⌧+3 |����i = |��++i
|u1i ⌧+3 ⌧+1 |����i = |+�+�i
|u2i ⌧+3 ⌧+2 |����i = |�++�i
|u3i ⌧+4 ⌧+2 |����i = |�+�+i
|3m "i ⌧+3 ⌧+2 ⌧+1 |����i = |+++�i
|3p "i ⌧+4 ⌧+2 ⌧+1 |����i = |++�+i
|3m #i ⌧+4 ⌧+3 ⌧+1 |����i = |+�++i
|3p #i ⌧+4 ⌧+3 ⌧+2 |����i = |�+++i
|4i ⌧+4 ⌧+3 ⌧+2 ⌧+1 |����i = |++++i

E4 ⌧+4 ⌧+3 ⌧+2 ⌧+1 ⌧�1 ⌧�2 ⌧�3 ⌧�4

E1m"

✓
⌧+1 ⌧�1 � ⌧+2 ⌧+1 ⌧�1 ⌧�2

�⌧+4 ⌧+1 ⌧�1 ⌧�4

�⌧+3 ⌧+1 ⌧�1 ⌧�3

+⌧+3 ⌧+2 ⌧+1 ⌧�1 ⌧�2 ⌧�3

+⌧+4 ⌧+2 ⌧+1 ⌧�1 ⌧�2 ⌧�4

+⌧+4 ⌧+3 ⌧+1 ⌧�1 ⌧�3 ⌧�4

�⌧+4 ⌧+3 ⌧+2 ⌧+1 ⌧�1 ⌧�2 ⌧�3 ⌧�4

◆

⌧zi = ⌧+i ⌧�i � 1

2

H = �t
X
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Spin Hamiltonian for the ���
2-site Anderson-Hubbard model

H = C0 + C1⌧

z
1 + C2⌧

z
2 + C3⌧

z
3 + C4⌧

z
4

+C12⌧
z
1 ⌧

z
2 + C13⌧

z
1 ⌧

z
3 + C14⌧

z
1 ⌧

z
4

+C23⌧
z
2 ⌧

z
3 + C24⌧

z
2 ⌧

z
4 + C34⌧

z
3 ⌧

z
4

+C123⌧
z
1 ⌧

z
2 ⌧

z
3 + C124⌧

z
1 ⌧

z
2 ⌧

z
4

+C134⌧
z
1 ⌧

z
3 ⌧

z
4 + C234⌧

z
2 ⌧

z
3 ⌧

z
4

+C1234⌧
z
1 ⌧

z
2 ⌧

z
3 ⌧

z
4



Spin Hamiltonian for the ���
2-site Anderson-Hubbard model
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The spin operators


U/W=0 

t/W=0 ⌧̂+1
|00i
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Seeing spins in experiments
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Jorgensen, et al, 
Nature Physics 4 536 (2008) 

The generalized inverse participation ratio

measures the size of these spins.




Summary and next steps 

A many-body localized system is non-ergodic. 

Many measures of many-body localization have been 
proposed, but it’s not clear they all measure the same thing.



Can the Anderson-Hubbard model be expressed in terms of 
Ising spins?  Yes, and we’ve done it for the 2-site case.



Can examining the spins and their coefficients help clarify 
the connections between proposed measures?  



Can the spin form of the 2-site Anderson-Hubbard model 
contribute to a renormalization group approach?



