Accelerator-Based Isotope Production at TRIUMF

CAP Conference

June 16th, 2015

Paul Schaffer
Head, Nuclear Medicine
TRIUMF
Accelerators at TRIUMF

- ISAC (RIB linac)
- ARIEL (50 MeV electron linac)
- 2 x TR30, CP42, TR13 H\(^-\) cyclotrons
- 500MeV H\(^-\) cyclotron

New addition: TR24; to be installed
TRIUMF Capabilities:

• **CP42**: up to 42 MeV and 200 µA, installed 1980

• **TR30-1**: up to 30 MeV and 900 µA, installed 1990
 - first TR30 designed, assembled by TRIUMF, components manufactured by EBCO, commissioned by TRIUMF

• **TR30-2**: up to 30 MeV and 1000 µA, installed 2003
 - Manufactured, installed by EBCO, commissioned by TRIUMF

• **TR13**: 13 MeV, 25µA, installed 1986 (UBC Neurology)
 - Capable of ^{11}C, ^{18}F, ^{13}N, ^{68}Ga, ^{89}Zr, ^{64}Cu, ^{44}Sc, ^{86}Y, ^{55}Co, ^{52}Mn…solid, liquid, gas targets

• **TR24**: 24 MeV, 500+ µA, to be installed

Overall

- 5 solid target, 3 gas stations operating at 30 MeV
 - Commercial production: ^{67}Ga, ^{111}In, ^{123}I, ^{103}Pd, ^{201}Tl
 - Future commercial production: ^{99m}Tc
Direct, multi-Curie production of 99mTc on three different cyclotrons

1) TRIUMF
2) University of British Columbia;
3) BC Cancer Agency;
4) Lawson Health Research Institute;
5) Centre for Probe Development and Commercialization
Tc-99m Alternatives: Many options

- $^{99}\text{Mo}/^{99m}\text{Tc}$ in high demand (~40M doses/yr)
- Gov’t owned reactors produce majority of ^{99}Mo supply
- NRU going offline Oct. 2016 (~40% of global supply)
- Capacity emerging (existing reactors, new technology)
- Projections range from oversupply to shortages\(^1\)
- Must move to full-cost recovery

Alternatives:
- $^{98}\text{Mo}(n,\gamma)^{99}\text{Mo}$
- $^{238}\text{U}(\gamma,F)^{99}\text{Mo}$
- LEU $^{235}\text{U}(n,F)$
- $^{100}\text{Mo}(\gamma,n)^{99}\text{Mo}$
- $^{100}\text{Mo}(p,2n)^{99m}\text{Tc}$

\(^1\) OECD - NEA/SEN/HLGMR(2014)2

graphic from http://www.covidien.com/
Cyclotrons By the Numbers

Estimated global cyclotron numbers by various manufacturers (with data from ACSI, GE, IBA and Siemens, Sumitomo data estimated)

Direct Production of 99mTc

Goals:
- Demonstrate routine, reliable, commercial-scale production of 99mTc via 100Mo(p,2n) at multiple sites, multiple brands;
- Obtain regulatory approval for clinical use in humans;
- Establish a business plan;
- Disseminate, commercialize the technology

Hypothesis: Future production will be from variety of sources (neutron, proton, electron) and market driven

Maximizing 99mTc production, minimizing impurities:

- <19 MeV proton energy entering 100Mo
- >8 MeV proton energy exiting 100Mo

Stopping power of Mo: Requires <1.2 g of metal
Reduce density, balance thermal conductivity

Bénard et al., J. Nucl. Med. 2014, 55, 1017-1022

Zeisler et al. WTTC 2014
Retrofit Existing Infrastructure

- 100Mo Target
- Cyclotron Modification
- Optimize Irradiation
- Purify 99mTcO$_4$
- Regulatory QA/QC
- 100Mo Recovery

TR19
TR30
PETtrace
Target Type vs. Cyclotron Power

100Mo Target
Cyclotron Modification
Optimize Irradiation
Purify 99mTcO4
Regulatory QA/QC
100Mo Recovery

TR30 (@24 MeV) target power: 10.8 kW @ 0.6 kW/cm²
TR19 target power: 5.4 kW @ 0.3 kW/cm²
PETtrace target power: 2.1 kW @ ~1.2 kW/cm²
Real and Projected Yields of 99mTc

100Mo Target | Cyclotron Modification | Optimize Irradiation | Purify 99mTcO$_4$ | Regulatory QA/QC | 100Mo Recovery

Production Yields

GE PETtrace
16.5 MeV, 130 μA
Theoretical 4.9 Ci (6h)
Achieved 4.7 Ci
Satn: 75.6 mCi/μA

TR19
18 MeV, 300 μA
Theoretical 15.4 Ci (6h)
Achieved 9.4 Ci (@ 240 μA)
Satn: 103 mCi/μA

TR30 (@24 MeV)
24 MeV, 500 μA
Theoretical 39 Ci (6h)
Achieved ~32 Ci (@ 450 μA)
Satn: TBD
Purification of 99mTc

100Mo Target | Cyclotron Modification | Optimize Irradiation | Purify 99mTcO$_4$ | Regulatory QA/QC | 100Mo Recovery

- SPE-based method:
 - original work: Dowex™ vs ABEC
 - new alternative resin: ChemMatrix™
- Process Time: complete in <90 min.
- Efficiency Range: 92.7 ± 1.1%
- Radiochemical Purity: >99.99% TcO$_4$
- Trace analysis: <10 Bq Mo-99, <5 ppm Al$^{3+}$
- non-Tc impurities removed

Disposable fluid path for GMP

Inherent Resin Versatility: Vendor Agnostic

Bénard et al., J. Nucl. Med. 2014, 55, 1017-1022
Regulatory Process: CTA nearly complete

- Not currently approved by Health Canada, FDA, etc.
- CTA preparation underway:
 - GLP preclinical rodent data (complete);
 - documentation (complete),
 - acceptance criteria: RNP, RCP, Al, Mo, H₂O₂ (complete);
 - process validation (complete)
- Shelf life (18 hrs), irradiation parameters are based on projected patient dose (objective <10% add’l vs. pure ⁹⁹ᵐTc)
 - Enrichment and irradiation parameters are interrelated and should not be considered independently
- CTA submission – June 2015 (60 patient trial)
- Fall 2015 - NDS submission
100Mo Raw Material/Irradiation Specifications

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Proposed max. isotopic impurity to maintain patient dose increase of ~10% compared to pure 99mTcO$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\leq 20 MeV1</td>
</tr>
<tr>
<td>92Mo</td>
<td>0.03</td>
</tr>
<tr>
<td>94Mo</td>
<td>0.03</td>
</tr>
<tr>
<td>95Mo</td>
<td>0.03</td>
</tr>
<tr>
<td>96Mo</td>
<td>0.03</td>
</tr>
<tr>
<td>97Mo</td>
<td>0.03</td>
</tr>
<tr>
<td>98Mo</td>
<td>7</td>
</tr>
</tbody>
</table>

1Maximum increase in patient dose of 9.8 % at 20 MeV, 18 hours after EOB.
2Maximum increase in patient dose of 10.1% at 22 MeV, 18 hours after EOB.
3Maximum increase in patient dose of 10.6% at 24 MeV, 18 hours after EOB.

- Based on theoretical yield calculations with 99mTc pertechnetate
- Mitigates the impact of dose due to 98Mo(p,3n)96Tc reaction at higher E

14
We Recycle

- High efficiency recovery process for multi-gram quantities of $^{100}\text{MoO}_4^{2-}$ required
- Some trace long-lived radionuclidic impurities
- Target dissolution waste stream (liquid, 10’s of mL/batch)
- Original method: ion exchange
 >90% efficiency (non-optimized), large column volumes, slow
- Currently using acidic precipitation, thermal decomp. process
- Routine recovery yields >99%
- Analysis of recovered ^{100}Mo underway
Remaining Challenges for Cyclotron Production of 99mTc

- Process: Long-term reliability (machine and target)
- Quality Control: Decentralized production inherently leads to a greater likelihood of product variability, dose uncertainty
- Regulatory: Considerations need to include target isotopic enrichment, but also batch-to-batch target consistency, irradiation energy/duration, shelf-life (patient dose)
- Economic: Arguments in one region may not apply in others but FCR must apply
- Availability: A viable alternative/backup needs to be used regularly
Production, Purification and Radiolabelling of Radiometals Produced in a Liquid Target on a 13 or 19 MeV Medical Cyclotron
Proposal

• **Hypothesis:** Established cyclotron centers can obtain research, and possibly clinical quantities of various radiometals by irradiating salt solutions in modified liquid targets
 • Leverage existing liquid target infrastructure for the production of other PET isotopes (18F)

Accepted trade-off:
Lower production yields in exchange for isotope versatility

Vogg ATJ, et al. Proceedings of the Sixth International Conference on Nuclear and Radiochemistry, 2004; Aachen, Germany.
Project Goals

• **Goals:**
 • Allow broader access to a variety of radiometallic isotopes
 • Radiometal production without generators, solid-target installation
 • Enable faster optimization of vector-isotope pairing
Isotope-Biomolecule Pairing

- **Proposed application:** labeling and *in vivo* analysis of novel proteins/peptides targeted toward HER2 variants/isoforms
 - Larger/slower-clearing constructs \rightarrow longer-lived isotopes
 - Smaller/faster-clearing constructs \rightarrow shorter-lived isotopes

• Specific Interests:
 • $^{94}\text{Mo}(p,n)^{94m}\text{Tc}$ (half-life: 52.5 min)
 • $^{44}\text{Ca}(p,n)^{44}\text{Sc}$ (half-life: 3.9 h)
 • $^{86}\text{Sr}(p,n)^{86}\text{Y}$ (half-life: 14.7 h)
 • $^{89}\text{Y}(p,n)^{89}\text{Zr}$ (half-life: 78.5 h)
 • $^{68}\text{Zn}(p,n)^{68}\text{Ga}$ (half-life: 68 min)

• Approach:
 • TRIUMF: TR13 (13 MeV, 20 µA), standard water target (testing, feasibility)
 • BCCA: TR19 (19 MeV, 300 µA), large volume water target (application: HER2Δ16 binders)
 • New target design (i.e. syphon targets)
Assessing Feasibility: Cross-sectional Considerations

$^{68}\text{Zn}(p,n)^{68}\text{Ga}$

$T_{1/2} = 68$ min

$^{44}\text{Ca}(p,n)^{44}\text{Sc}$

$T_{1/2} = 3.9$ h

$^{86}\text{Sr}(p,n)^{86}\text{Y}$

$T_{1/2} = 14.7$ h

$^{89}\text{Y}(p,n)^{89}\text{Zr}$

$T_{1/2} = 78.5$ h
<table>
<thead>
<tr>
<th>Prod</th>
<th>Production route</th>
<th>Metal salt</th>
<th>Density (g/mL)</th>
<th>Beam current (μA)</th>
<th>Time (min)</th>
<th>Yield (MBq)</th>
<th>Sat. yield (MBq/μA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>94mTc</td>
<td>94Mo(p,n)94mTc</td>
<td>$(\text{NH}_4)_6\text{Mo}7\text{O}{24}$</td>
<td>1.66</td>
<td>5</td>
<td>60</td>
<td>110±20</td>
<td>40±6</td>
</tr>
<tr>
<td>44Sc</td>
<td>44Ca(p,n)44Sc</td>
<td>Ca(NO$_3$)$_2$</td>
<td>1.55</td>
<td>7.6</td>
<td>60</td>
<td>5.55±0.22</td>
<td>4.6±0.3</td>
</tr>
<tr>
<td>68Ga</td>
<td>68Zn(p,n)68Ga</td>
<td>Zn(NO$_3$)$_2$</td>
<td>1.65</td>
<td>6.8</td>
<td>60</td>
<td>275±1</td>
<td>68±5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.56</td>
<td>6.96</td>
<td>60</td>
<td>480±30</td>
<td>141±6</td>
</tr>
<tr>
<td>89Zr</td>
<td>89Y(p,n)89Zr</td>
<td>Y(NO$_3$)$_3$ x HNO$_3$</td>
<td>1.49</td>
<td>7.3</td>
<td>60</td>
<td>32±2</td>
<td>360±9</td>
</tr>
<tr>
<td>86Y</td>
<td>86Sr(p,n)86Y</td>
<td>Sr(NO$_3$)$_2$</td>
<td>1.43</td>
<td>4.6</td>
<td>60</td>
<td>7.4±0.5</td>
<td>31±1</td>
</tr>
</tbody>
</table>
Purification – All metals

<table>
<thead>
<tr>
<th>Prod.</th>
<th>Irradiated metal salt</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Final Eluate</th>
<th>Activity received from target (%)</th>
<th>Vol. (mL)</th>
<th>Eluent</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{44}Sc</td>
<td>Ca(NO$_3$)$_2$</td>
<td>DGA</td>
<td>-</td>
<td></td>
<td>88 ± 6 (n = 5)</td>
<td>2.5</td>
<td>0.05M HCl</td>
</tr>
<tr>
<td>^{68}Ga</td>
<td>Zn(NO$_3$)$_2$</td>
<td>AG 50W-X8</td>
<td>DGA</td>
<td></td>
<td>92 ± 8 (n = 3)</td>
<td>1.0</td>
<td>H$_2$O</td>
</tr>
<tr>
<td>^{89}Zr</td>
<td>Y(NO$_3$)$_3$</td>
<td>Hydroxamate resin</td>
<td>-</td>
<td></td>
<td>82 ± 5 (n = 4)</td>
<td>0.75</td>
<td>1M Oxalic Acid</td>
</tr>
<tr>
<td>^{86}Y</td>
<td>Sr(NO$_3$)$_2$</td>
<td>DGA</td>
<td>-</td>
<td></td>
<td>99 ± 4 (n = 3)</td>
<td>1.0</td>
<td>H$_2$O</td>
</tr>
<tr>
<td>^{94m}Tc</td>
<td>(NH$_4$)$_6$Mo7O${24}$</td>
<td>ABEC-2000</td>
<td>SCX/Alumina</td>
<td></td>
<td>70.9 ± 0.7 (n = 4)</td>
<td>6.0</td>
<td>saline</td>
</tr>
</tbody>
</table>

Specific activity: ^{44}Sc (1.4 TBq/µmol), ^{68}Ga (5.2TBq/µmol), ^{89}Zr (0.015 TBq/µmol), ^{86}Y (0.41 GBq/µmol), ^{94m}Tc ()
Radiolabelling chemistry

Radiolabelling conditions

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Temperature</th>
<th>Time</th>
<th>pH</th>
<th>Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y-86</td>
<td>95 °C</td>
<td>30 min</td>
<td>pH=6</td>
<td>0.33M HEPES</td>
</tr>
<tr>
<td>Zr-89</td>
<td>r.t.</td>
<td>15 min</td>
<td>pH=7</td>
<td></td>
</tr>
<tr>
<td>Ga-68</td>
<td>95 °C</td>
<td>10 min</td>
<td>pH=4</td>
<td>0.33M HEPES</td>
</tr>
</tbody>
</table>
Preparation of Liquid Target Solutions

- **Gas evolution during irradiation = high target pressures in a closed target body**
 - Radiolysis of water, O\(_2\), H\(_2\)
 - 1M nitric acid for \(^{nat}\)Zn and \(^{nat}\)Sr salt irradiations*

- **Compatibility between salt solutions and target components**
 - Havar foil (Co-based, Cr, Ni, Fe, W, Mo, Mn)
 - Failed with Cl\(^-\) salts (etching evident)
 - Al vacuum foil (failed in boil tests)
 - Target body (Al) – evidence of corrosion
 - Switch to Nb target body

- **Precipitation**
 - Need thorough flushing protocol between runs

Summary

• A simple method for the production of research quantities of various radiometals using a modified liquid-target system.
• Salt solutions of natural isotopic abundance were irradiated in a standard water target on our 13 MeV cyclotron for 60 min. After irradiation, all solutions were withdrawn from the target and purified using cation exchange or chelating resins.
• Several isotopes (68Ga, 89Zr, 44Sc, 89Y, 94mTc) were produced in a standard water target on our 13 MeV cyclotron.
• **Future work:** labeling and biodistribution analysis of breast cancer (HER2) binders; novel target designs (higher production)
Production and assessment of radiotherapeutic isotopes
500 MeV Cyclotron Capabilities

Previous decade: routine operation at 220-250μA

Recently achieved:
- Materials science, 500 MeV isotopes:
 - BL1A (100μA)
- ISAC program:
 - BL2A (100μA)
- Sr production:
 - BL2C (100μA)
 - Total (300μA)
Isotope Accelerator Program (ISAC): 50 kW ISOL Facility

Isotope production via spallation of uranium:

Implementation of ISOL technique:

• Uranium carbide, thorium oxide
• 480 MeV protons, 10 µA
• Various available ion sources
• ~2500:1 mass separation resolution (~10^6–10^9 ions/s)
• Ion energy = ~20-60 keV
Candidate α-emitters for therapy

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Half-life</th>
<th>Considerations</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{149}Tb</td>
<td>4.2 h</td>
<td>Good chemistry, alt. isotopes</td>
<td>Spallation, heavy-particle accelerator</td>
</tr>
<tr>
<td>^{211}At</td>
<td>7.2 h</td>
<td>No stable isotope, Thyroid uptake</td>
<td>α-cyclotron</td>
</tr>
<tr>
<td>^{212}Bi</td>
<td>1.0 h</td>
<td>Renal uptake</td>
<td>Generator ($^{224}\text{Ra}/^{212}\text{Bi}$)</td>
</tr>
<tr>
<td>^{213}Bi</td>
<td>0.76 h</td>
<td>Renal uptake</td>
<td>Generator ($^{225}\text{Ac}/^{213}\text{Bi}$)</td>
</tr>
<tr>
<td>^{223}Ra</td>
<td>10 d</td>
<td>4 α-decays, bone targeting</td>
<td>Generator ($^{227}\text{Ac}/^{223}\text{Ra}$)</td>
</tr>
<tr>
<td>^{225}Ac</td>
<td>10 d</td>
<td>4 α-decays,</td>
<td>Generator ($^{229}\text{Th}/^{225}\text{Ac}$)</td>
</tr>
</tbody>
</table>
209At-based imaging to establish 211At α-therapy

209At identified as novel SPECT isotope

Therapy

\[^{211}\text{At} \quad t_{1/2} = 7.2 \text{ h} \]

(α-emitter)

Imaging

\[^{209}\text{At} \quad t_{1/2} = 5.4 \text{ h} \]

(γ-emitter)

209At collected from 213Fr ion beams
Ion beams of therapeutic α-emitters

<table>
<thead>
<tr>
<th>Isotope</th>
<th>1^{st} Ionization energy</th>
<th>Ion Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TANTALUM TARGET</td>
<td></td>
</tr>
<tr>
<td>^{149}Tb</td>
<td>5.86 eV</td>
<td>Re surface ionizing</td>
</tr>
<tr>
<td></td>
<td>URANIUM TARGET:</td>
<td></td>
</tr>
<tr>
<td>^{211}At</td>
<td>9.54 eV</td>
<td>Plasma/Resonance ionization laser</td>
</tr>
<tr>
<td>$^{212/213}\text{Bi}$</td>
<td>7.29 eV</td>
<td>Plasma (aka FEBIAD)</td>
</tr>
<tr>
<td>$^{223/225}\text{Ra}$</td>
<td>5.28 eV</td>
<td>Re surface ionizing</td>
</tr>
<tr>
<td>^{225}Ac</td>
<td>5.28 eV</td>
<td>Re surface ionizing</td>
</tr>
<tr>
<td></td>
<td>Note:</td>
<td></td>
</tr>
<tr>
<td>$^{211/213}\text{Fr}$</td>
<td>3.94 eV</td>
<td>Re surface ionizing (Most Intense!)</td>
</tr>
</tbody>
</table>
ISOL pilot study: 209At

Implantation chamber

Sample holder (with current monitor)

Candidate foil

$\text{NaCl foil} \sim 250 \text{ nm}$

I.D. = 20 mm

Aluminum Bracket = 30 mm

Credit to: Peter Kunz, TRIUMF
From bench to (pre-clinical) bedside

10^9 ions/s of 213Fr collected for up to 9.5 h

209At recovered by dissolving NaCl targets in 0.1 N NaOH (< 300 µL)

Up to 8.9 mCi 209At (EOB)
(Measured by γ-ray spectroscopy)

Labeling Chemistry

209At: 80 keV peak 123I: 159 keV peak
211Rn/211At generator system from 211Fr ion beams (>10^9 ions/s)

211Rn/211At generator could increase 211At supply and opportunities for distribution

The 211Fr decay chain provided a novel approach to 211Rn production

211Rn was isolated in dodecane, other radioactive inventory was washed away with aqueous solution

211At progeny recovered after several hours of grow-in
\[^{211}\text{Rn isolation design}\]

Implant \(^{211}\text{Fr}\) in NaCl

\[\downarrow\]

Submerge target in dodecane

\[\downarrow\]

Dissolve NaCl in dilute NaOH

\[\downarrow\]

Mix and remove aqueous solution (Pb/Bi/At/Po)

\[\downarrow\]

\(^{211}\text{Rn isolated in dodecane} \rightarrow ^{211}\text{A}\]

Adapted from Maeda et al, 2015 Radioanal Nucl Chem, 303:1465-1468 (Kanazawa U.)
Moving on to feasibility of 225Ra/225Ac

Add 0.1 ml 0.1 N HCl

Evaporate

Add and Retrieve 0.1 ml 0.1 N HCl

Extraction using 0.1N HCl solution

Residual Activity (Bq)

Evap.-Rinse Cycles

Recoil transfer in vacuum

Source

Catcher

Efficiency ~30%

225Ac 221Fr 217At 213Po

213Bi 221Fr 217At 213Po
Future Direction: \(^{225}\text{Ac}/^{213}\text{Bi} \)

- ISOL and Target Dissolution/Extraction

\[\text{225Ac, 213Bi, many other options} \]

- TRIUMF capable of producing large (Ci) quantities of isotopes such as \(^{225}\text{Ac}, ^{223,225}\text{Ra}, ^{213}\text{Bi}, ^{211}\text{Rn} \)

- Possible to ship targets for off-site processing (short-term)

- Effort in early stages, infrastructure, regulatory capabilities being pursued/implemented (long-term)
Medical Isotopes from ISAC/ISOL

- Generators: $^{211}\text{Rn}/^{211}\text{At}$; $^{225}\text{Ra}/^{225}\text{Ac}$; $^{225}\text{Ac}/^{213}\text{Bi}$

Feasibility/Chemistry in lead up to full target harvest:
Acknowledgements: Tc-99m

• **The Team:**
 - PI's: F. Bénard, T. Ruth, A. Celler, J. Valliant, M. Kovacs,
 - Ken Buckley, Vicky Hanemaayer, Brian Hook,
 - Stuart McDiarmid, Stefan Zeisler, Frank Prato,
 - Anne Goodbody, Joe McCann, Conny Hoehr,
 - Tom Morley, Julius Klug, Philip Tsao,
 - Milan Vuckovic, Patrick Ruddock, Maurice Dodd,
 - Guillaume Langlois, Wade English, Xinchi Hou,
 - Jesse Tanguay, Jeff Corsault, Ross Harper,
 - Frank Prato, Constantinos Economou

• **TRIUMF and BCCA machine shops**

• **Finances/Admin**
 - Henry Chen, Francis Pau, Jenny Song, Steven Foster, Frank Gleeson,
 - James Schlosser, Jim Hanlon, Ann Fong, Neil McLean, Kevin McDuffie,
 - Niki Martin, Karen Young
This work has been funded in part by an Innovation Grant from the Canadian Cancer Society (CCS)

Production
Jason Crawford
Tom Ruth
Peter Kunz
Jens Lassen
Stefan Zeisler
Friedhelm Ames
Colin Morton
Peter Machule
Stephen Chan
Linda Graham

Radiation Safety
Joe Mildenberger
Danka Krstmanovic
Roxana Ralea
Maxim Kinakin
David Prevost
Roxana Ralea
Mike Johnson
Lynne Lemessurier

Animal Imaging
François Bénard (BCCRC)
Kuo-Shyan Lin (BCCRC)
Vesna Sossi (UBC)
Chenoa Mah (UBC)
Tina Jorgensen (CCM)
Stephan Blinder (UBC)
Katherine Dinelle (UBC)
Maryam Shirmohammad (UBC)

Chemistry
D. Scott Wilbur (UW)
Oliver Press *(antibody)*
Don Hamlin (UW)
Hua Yang (TRIUMF)
Acknowledgements: Salt Target

• **The Team:**
 - TRIUMF: E Oehlke, C Hoehr, K Buckley, S Zeisler, M Adam, TJ Ruth, V Hanemaayer, M Dodd, B Hook, S McDiarmid, H Yang, Q Miao, L Graham, D Prevost
 - BCCA: F Bénard, M Vuckovic, G Dias, J Klug, W English, KS Lin

• **Collaborators, staff and students:**
 - Mark Martinez (UBC), P Jahangiri,
 - C Orvig (UBC), E Price, C Ramogida,
 - A Celler (UBC), X Hou

• **TRIUMF and BCCA machine shops**
Thank you!

Merci!