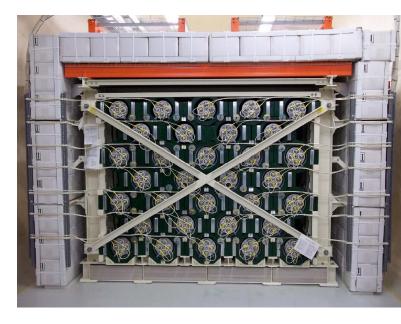
HALO at LNGS

IPP Town Hall – AGM June 14, 2015

Clarence J. Virtue

HALO at SNOLAB - a Helium And Lead Observatory for supernova neutrinos


A "SN detector of opportunity" / An evolution of LAND – the Lead Astronomical Neutrino Detector, C.K. Hargrove et al., Astropart. Phys. 5 183, 1996.

"Helium" – because of the availability of the ³He neutron detectors from the final phase of SNO

+

"Lead" – because of high v-Pb crosssections, low n-capture cross-sections, complementary sensitivity to water Cerenkov and liquid scintillator SN detectors

see talk Wednesday pm (W2-7) by C. Bruulsema

HALO is using lead blocks from a decommissioned cosmic ray monitoring station

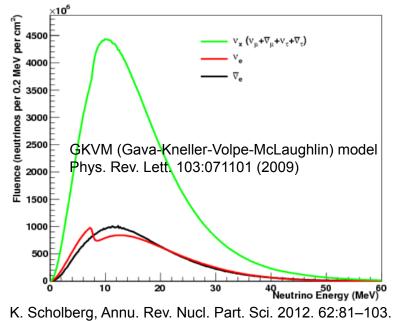
What is to be Learnt?

- Astrophysics
 - Explosion mechanism
 - Accretion process
 - Black hole formation (cutoff)
 - Presence of Spherical accretion shock instabilities (3D effect)
 - Proto-neutron star EOS
 - Microphysics and neutrino transport (neutrino temperatures and pinch parameters)
 - Nucleosynthesis of heavy elements
- Particle Physics
 - Normal or Inverted neutrino mass hierarchy
 - Presence of axions, exotic physics, or extra large dimensions (cooling rate)
 - Etc.

Other considerations...

- While the probability of a galactic SN in a lifetime are good (~3 per century), many current kt-scale supernova-sensitive detectors have other primary objectives necessitating down-time; extensive calibration; reconfiguration; and end of life
- For next generation 100kt-scale neutrino detectors costs go up as the energy threshold goes down and there is a risk that supernova sensitivity will be degraded or sacrificed in order to contain costs
- In the case of large-scale dedicated SN detectors, capital funding, when a timescale can't be put on the extraction of physics results, is challenging
- So.... there's a niche for low cost, low maintenance, long lifetime, dedicated supernova detectors

Supernova Neutrinos – First Order Expectations


- Approximate equipartition of neutrino fluxes
- Several characteristic timescales for the phases of the explosion (collapse, burst, accretion, cooling)
- Time-evolving v_e , \overline{v}_e , v_x luminosities reflecting aspects of SN dynamics
 - Presence of neutronization pulse
 - Hardening of spectra through accretion phase then cooling
- Fermi-Dirac thermal energy distributions characterized by a temperature, T_{v} , and pinching parameter, η_v

$$\phi_{FD}(E_{\nu}) = \frac{1}{T_{\nu}^{3}F_{2}(\eta_{\nu})} \frac{E_{\nu}^{2}}{\exp\left(E_{\nu}/T_{\nu} - \eta_{\nu}\right) + 1}$$

• Hierarchy and time-evolution of average energies at the neutrinosphere

$$T(v_x) > T(\overline{v_e}) > T(v_e)$$

 v-v scattering collective effects and MSW oscillations further imprint physics on the FD distributions

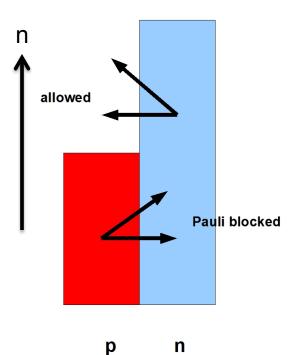
Lead as a Supernova Neutrino Target

- CC and NC cross-sections are the largest of any reasonable material though thresholds are high
- Neutron excess (N > Z) Pauli blocks

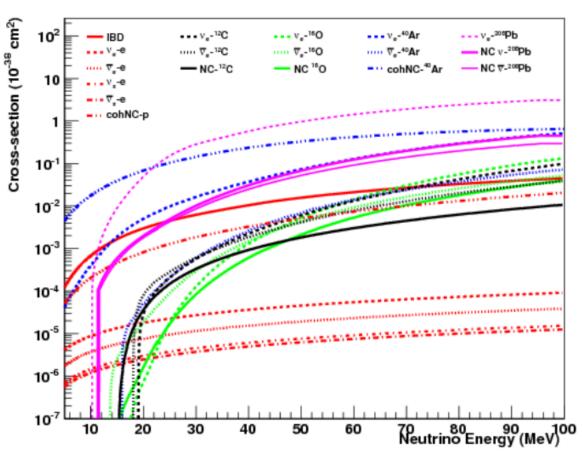
$\overline{\nu}_e + p \rightarrow e^+ + n$

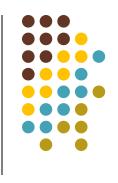
- High Z increases $\nu_{\rm e}$ CC cross-sections relative to $\overline{\nu}_{\rm e}$ CC and NC due to Coulomb enhancement further suppressing the $\overline{\nu}_{\rm e}$ CC channel
- Results in mainly $\nu_{\rm e}$ sensitivity complementary to water Cerenkov and liquid scintillator detectors
- de-excitation of nucleus following CC or NC interactions is by 1n or 2n emission

Other Advantages

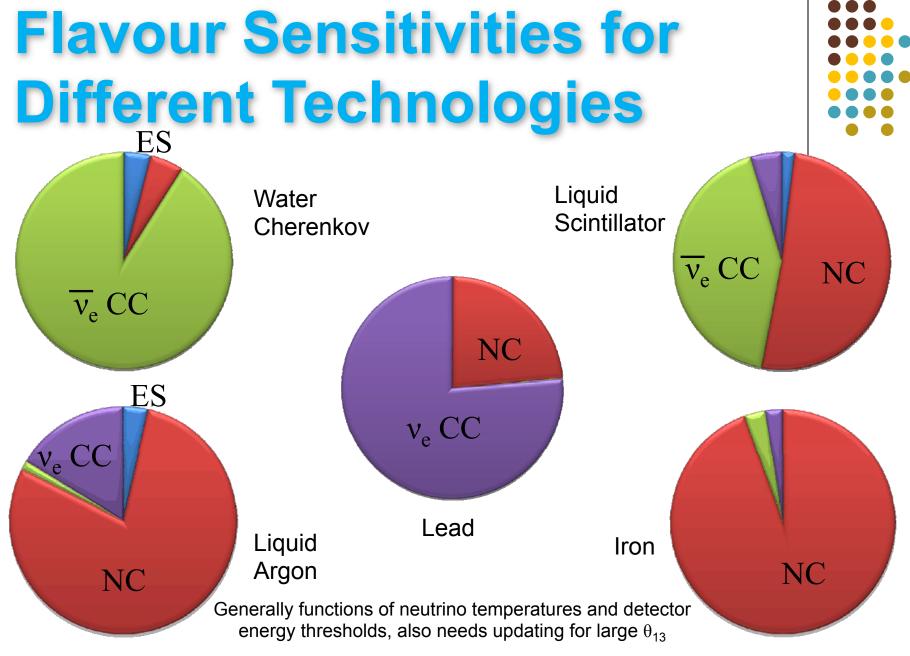

- High Coulomb barrier \rightarrow no (α , n)
- Low neutron absorption cross-section (one of the lowest in the table of the isotopes) → a good medium

for moderating neutrons down to epithermal energies




6

Comparative v-nuclear Cross-sections



 $CC: \nu_e + {}^{208} \text{Pb} \rightarrow {}^{207}\text{Bi} + n + e^ \nu_e + {}^{208} \text{Pb} \rightarrow {}^{206}\text{Bi} + 2n + e^ NC: \nu_x + {}^{208} \text{Pb} \rightarrow {}^{207}\text{Pb} + n$ $\nu_x + {}^{208} \text{Pb} \rightarrow {}^{206}\text{Pb} + 2n$

Thresholds CC 1n 10.7 MeV CC 2n 18.6 MeV NC 1n 7.4 MeV NC 2n 14.4 MeV

2n cross-sections don't appear on plot

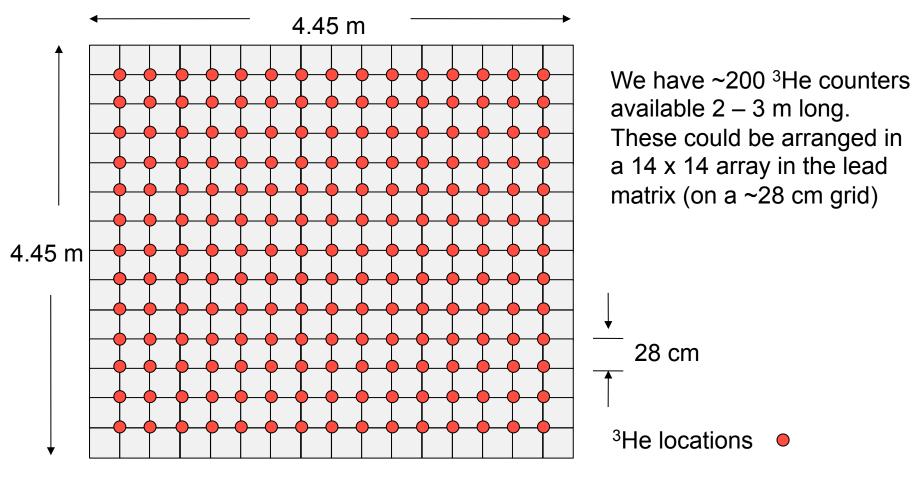
K. Scholberg, Annu. Rev. Nucl. Part. Sci. 2012. 62:81–103.



A New Opportunity...

The OPERA experiment at LNGS is being decommissioned this year making available ~ 1kt of lead for new experiments

- an informal expression of interest was made at the April 2015 meeting of the Gran Sasso SAC
- Stefano Ragazzi (Director, LNGS) has committed that the lead will remain available as long as a proposal is in the pipeline and encouraged us to proceed with a formal LOI and full proposal.


"HALO" at LNGS

- concepts are preliminary
 - have ~550 m of ³He counters (very quiet... ~40 cnts / day)
 - plus 120 m of ¹⁰BF₃ counters
 - likely more is desirable and/or an alternative technology (could be less quiet if not used in trigger)
 - cosmic muon rate ~x100 higher in LNGS
 - veto desirable, not absolutely necessary
 - modest (water) shielding should reduce ambient neutrons to negligible level, isolate and define the target volume

"HALO" at LNGS

0

IPP Town Hall - AGM

"HALO" at LNGS

- increasing density of neutron detection will increase capture efficiency / scientific reach of detector AND costs
- needs full exploration with detailed simulations
- backgrounds in ³He counters are lower than required for setting a low threshold SN trigger → central volume of detector instrumented with these and surrounding volume with alternative technology... to be explored

Event Rates / kt of Lead (100% capture efficiency)

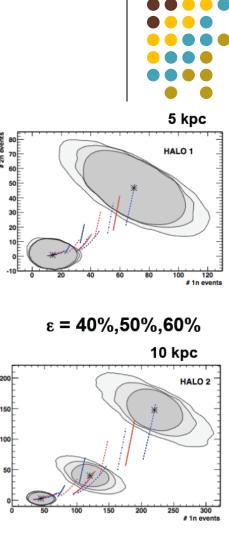
$\langle E^0_{\nu_x} \rangle [\text{MeV}]$	13		1	8		25	
MH (and θ_{13})	$\begin{array}{c} \text{NMH} \\ \text{small} \ \theta_{13} \end{array}$	IMH		$\begin{array}{c} \text{NMH} \\ \text{small} \ \theta_{13} \end{array}$		IMH	6
$\alpha_{ u_x}$	7	2	7	2	7	2	from
N_{1n}	90	390	285	300	225	570	JCA
N_{2n}	< 3	150	30	105	24	390	
neutrons emitted	~ 90	690	345	510	273	1350	

n Väänänen and Volpe, AP **1110** (2011) 019.


Table 6. Total numbers of events during the explosion (assuming 100 % detection efficiency, distance to the supernova 10 kpc and target mass 1 kton of ²⁰⁸Pb). As in table 4 but assuming equal neutrino luminosities throughout the whole neutrino emission and the total time integrated luminosity $3 \times$ 10⁵³ erg.

Earlier work, in 1kt of lead for a SN @ 10kpc[†],

- Assuming FD distribution with T=8 MeV for v_x .
- $\,\,{}^{_{\rm B}}\,$ 860 neutrons through ν_{e} charged current channels
 - 380 single neutrons


- 240 double neutrons (480 total)
- 250 neutrons through v_x neutral current channels
 - 100 single neutrons
 - 75 double neutrons (150 total)

cross-sections from Engel, McLaughlin, Volpe, Phys. Rev. D 67, 013005 (2003)

possibility to measure neutrino temperatures and pinching

parameters. N_{1n} and N_{2n} per kt from Väänänen and Volpe,

ε = 40%,60%,80%

March 2012 APS, K. Scholberg.

June 14, 2015

JCAP 1110 (2011) 019

Expected HQP training

- since 2010 a total of 34 students, from 11 different institutes, have been involved in HALO through:
 - UG summer employment
 - UG thesis projects
 - MSc thesis projects and internships
- most have spent time at SNOLAB
- a continuation at at least this level is expected

Equipment needs

- a portion of detector capital costs could be the object of a CFI request
- anticipate INFN, NSF contributions
- timeline
 - LNGS LOI Fall 2015
 - LNGS Proposal 2017
 - need for capital beginning 2018

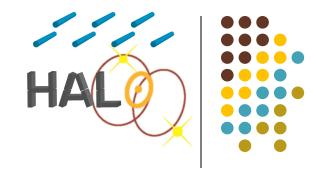
Computing requirements

no large scale resource requirements foreseen

Expected calls on technical support

- early days...
- expected Canadian involvement to be with neutron detection
- possible calls on technical support from TRIUMF, SNOLAB or the MRS facilities for both detector development and production fabrication

Relationships with other projects


- largest, perhaps the only relationship, is between the HALO at SNOLAB project and this new HALO at LNGS effort
 - HALO at SNOLAB is an excellent testbed for neutron detection technology for HALO at LNGS
 - depending on choices to be made for n-detection technology the ³He detectors *could* move to LNGS ending the experiment at SNOLAB

Relationships with international partners

- most institutions involved in HALO at SNOLAB would continue with HALO at LNGS
- there are potential new collaborators in the US; existing collaborators have been NSF funded
- there are potential new collaborators in Europe and in particular in Italy; we would anticipate INFN participation
- growth within Canada is most welcome, to maintain leadership and long-term continuity... this lead-based detector concept is "Canadian" (C.K. Hargrove)

The HALO Collaboration

C Bruulsema¹, C A Duba², F Duncan^{3,1}, J Farine¹, A Habig⁴, A Hime⁵, A Kielbik¹, M Howe⁶, C Kraus¹, S Luoma¹, R G H Robertson⁷, K Scholberg⁸, M Schumaker¹, J Secrest⁹, T Shantz¹, J Vasel⁴, C J Virtue¹, B von Krosigk¹⁰, R Wendell¹¹, J F Wilkerson⁶, S Yen¹² and K Zuber¹⁰

- ¹ Laurentian University, Sudbury, ON P3E 2C6, Canada
- ² Digipen Institute of Technology, Redmond, WA 98052, USA
- ³ SNOLAB, Sudbury, ON P3Y 1M3, Canada
- ⁴ University of Minnesota Duluth, Duluth, MN 55812 USA
- ⁵ Pacific Northwest National Laboratory, Richland, WA 99352, USA
- ⁶ University of North Carolina, Chapel Hill, NC 27599, USA
- ⁷ University of Washington, Seattle, WA 98195, USA
- ⁸ Duke University, Durham, NC 27708, USA
- ⁹ Armstrong State University, Savannah, GA 31419, USA
- 10 TU Dresden, D-01062 Dresden, Germany
- ¹¹ ICRR, University of Tokyo, Kamioka Observatory, Japan
- ¹² TRIUMF, Vancouver, BC V6T 2A3, Canada

Funded by:

To help in the development of the LOI and Full Proposal please contact

Clarence Virtue cjv@snolab.ca