The Pressurized Bouncing Ball

A simple model

Gaëtan Landry Alex Georgallas

Dalhousie University
Faculty of Agriculture
Truro, NS
June 15, 2015

Context - Physics

- Introductory physics - Motion
- Parabolic motion
- Energy transformations, losses
- Air resistance, other sources of errors
- Intermediate/advanced physics - Impact
- Mechanics of impact
- Impulse forces, deformation, etc.
- No simple model available!

Context - Sports rules

- NBA - "The ball shall be an officially approved NBA ball between $7 \frac{1}{2}$ and $8 \frac{1}{2}$ pounds pressure [51.7 to 58.6 kPa]."
- FIBA - "[The ball shall] be inflated to an air pressure such that, when it is dropped onto the playing floor from a height of approximately $1,800 \mathrm{~mm}$ measured from the bottom of the ball, it will rebound to a height of between $1,200 \mathrm{~mm}$ and $1,400 \mathrm{~mm}$, measured to the top of the ball."

Image taken by Paul Keleher

Definition

The coefficient of restitution e of a ball impacting against an immovable body is

$$
\begin{equation*}
e=\left|\frac{v_{\mathrm{f}}}{v_{\mathrm{i}}}\right| \tag{1}
\end{equation*}
$$

For balls, e ranges between 0 [no bounce] and 1 [perfectly bouncy].

The Question

Q: How does internal pressure affect the bouncing of a ball?
Q: What is $e(P)$?
A: No model exists!

- Polynomial?
- Exponantial?
- Something else?

Our Answer

- Pressure forces
- Wall forces
- Dissipative forces
- Final model

Pressure Forces 1

Geometry

$$
\begin{array}{r}
A=\pi\left[R^{2}-(R-x)^{2}\right] \\
V=\frac{4}{3} \pi R^{3}-\frac{1}{3} \pi x^{2}(3 R-x)
\end{array}
$$

Pressure force

$$
\begin{equation*}
F_{\mathrm{P}}=\left(P-P_{0}\right) A \tag{4}
\end{equation*}
$$

Isothermal compression

$$
\begin{equation*}
P V=P_{\mathrm{i}} V_{\mathrm{i}} \tag{5}
\end{equation*}
$$

Pressure Forces 2

Combining (2)-(5) together yields

$$
\begin{equation*}
F_{\mathrm{P}}=\left[\frac{4 R^{3}}{4 R^{3}-x^{2}(3 R-x)} P_{\mathrm{i}}-P_{0}\right] \pi x(2 R-x) \tag{6}
\end{equation*}
$$

Taylor expansion in terms of the gauge pressure $P_{\mathrm{G}}=P_{\mathrm{i}}-P_{0}$

$$
\begin{equation*}
F_{\mathrm{P}}=2 \pi R P_{\mathrm{G}} x\left[1-\frac{1}{2}\left(\frac{x}{R}\right)+\frac{3}{4}\left(1+\frac{P_{0}}{P_{\mathrm{G}}}\right)\left(\frac{x}{R}\right)^{2}+\ldots\right] \tag{7}
\end{equation*}
$$

If $x \ll R$ and $P_{\mathrm{G}} \gg 0$

$$
\begin{equation*}
F_{\mathrm{P}} \approx 2 \pi R P_{\mathrm{G}} x \tag{8}
\end{equation*}
$$

F_{P} is linear in x, with a force constant of

$$
\begin{equation*}
k_{\mathrm{P}}=2 \pi R P_{\mathrm{G}} \tag{9}
\end{equation*}
$$

Wall Forces 1

Wall forces (shear forces)

$$
\begin{equation*}
F_{\mathrm{W}}=A_{\mathrm{p}} G \theta \tag{10}
\end{equation*}
$$

Cross-sectional area of perimeter

$$
\begin{equation*}
A_{\mathrm{p}}=2 \pi D_{\mathrm{W}} \sqrt{R^{2}-(R-x)^{2}} \tag{11}
\end{equation*}
$$

Angle of contact

$$
\begin{equation*}
\theta=\arccos \left(\frac{R-x}{R}\right) \tag{12}
\end{equation*}
$$

Wall Forces 2

Combining (10)-(12) yield

$$
\begin{equation*}
F_{\mathrm{W}}=2 \pi G D_{\mathrm{W}} \sqrt{R^{2}-(R-x)^{2}} \arccos \left(\frac{R-x}{R}\right) \tag{13}
\end{equation*}
$$

Taylor expansion

$$
\begin{equation*}
F_{\mathrm{W}}=2 \pi G D_{\mathrm{W}} x\left[2-\frac{1}{3}\left(\frac{x}{R}\right)-\frac{1}{15}\left(\frac{x}{R}\right)^{2}+\ldots\right] \tag{14}
\end{equation*}
$$

If $x \ll R$

$$
\begin{equation*}
F_{\mathrm{W}} \approx 4 \pi G D_{\mathrm{W}} x \tag{15}
\end{equation*}
$$

F_{W} is linear in x, with a force constant of

$$
\begin{equation*}
k_{\mathrm{W}}=4 \pi G D_{\mathrm{W}} \tag{16}
\end{equation*}
$$

Total Restoring Force

According to our model, the combined restoring effect of wall strength and pressure is

$$
\begin{align*}
F_{\mathrm{R}} & =F_{\mathrm{P}}+F_{\mathrm{W}} \tag{17}\\
& \approx\left(2 \pi R P_{\mathrm{G}}+4 \pi G D_{\mathrm{W}}\right) x
\end{align*}
$$

and the ball will effectively have a spring constant of

$$
\begin{equation*}
k=2 \pi R P_{\mathrm{G}}+4 \pi G D_{\mathrm{W}} \tag{18}
\end{equation*}
$$

Dissipative Forces 1

Let us consider a ball of spring-like restoring force F_{R}, with spring constant k, subject to a uniform dissipative force F_{D}.

In compression $(A \rightarrow B)$

$$
K_{\mathrm{i}}=\frac{1}{2} k x_{0}^{2}-m g x_{0}+F_{\mathrm{D}} x_{0}
$$

(20)

Dissipative Forces 2

Combining (20) and (21), we obtain

$$
\begin{equation*}
\frac{\left(1+e^{2}\right)}{\left(1-e^{2}\right)^{2}}=\frac{k K_{\mathrm{i}}}{4 F_{\mathrm{D}}^{2}}-\frac{m g K_{\mathrm{i}}}{2 F_{\mathrm{D}}^{2} x_{0}^{2}} \tag{21}
\end{equation*}
$$

If $\frac{1}{2} k x_{0}^{2} \gg m g x_{0}$, we can ignore the last term, and

$$
\begin{equation*}
\frac{\left(1+e^{2}\right)}{\left(1-e^{2}\right)^{2}} \approx \frac{k K_{\mathrm{i}}}{4 F_{\mathrm{D}}^{2}} \tag{22}
\end{equation*}
$$

Final Model

Incorporating (19) into (23), we obtain

$$
\begin{equation*}
\frac{\left(1+e^{2}\right)}{\left(1-e^{2}\right)^{2}}=\frac{\left(2 \pi R P_{\mathrm{G}}+4 \pi G D_{\mathrm{W}}\right) K_{\mathrm{i}}}{4 F_{\mathrm{D}}^{2}} \tag{23}
\end{equation*}
$$

Or

$$
\begin{equation*}
\frac{\left(1+e^{2}\right)}{\left(1-e^{2}\right)^{2}}=A P_{\mathrm{G}}+B \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\frac{\pi R K_{\mathrm{i}}}{2 F_{\mathrm{D}}^{2}} \quad \text { (25) } \quad B=\frac{\pi G D_{\mathrm{W}} K_{\mathrm{i}}}{F_{\mathrm{D}}^{2}} \quad \text { (26) } \quad \frac{B}{A}=\frac{2 G D_{\mathrm{W}}}{R} \tag{27}
\end{equation*}
$$

Reality check - BasketballI

Height (m)	A $\left(10^{-4} \mathrm{~Pa}^{-1}\right)$	B	G $\left(10^{5} \mathrm{~Pa}\right)$	F_{D} (N)
$\bullet 0.75$	2.576 ± 0.052	1.35 ± 0.28	1.01 ± 0.27	55.92 ± 0.92
$\circ 1.50$	1.916 ± 0.036	1.29 ± 0.20	1.29 ± 0.27	91.7 ± 1.5

Reality check - Soccerball

Height (m)	A $\left(10^{-4} \mathrm{~Pa}^{-1}\right)$	B	G $\left(10^{5} \mathrm{~Pa}\right)$	F_{D} (N)
$\bullet 0.75$	2.76 ± 0.11	6.60 ± 0.65	2.90 ± 0.49	43.8 ± 1.2
-1.50	2.277 ± 0.088	3.24 ± 0.46	2.52 ± 0.44	55.7 ± 1.4

Reality check - Volleyball

Height (m)	A $\left(10^{-4} \mathrm{~Pa}^{-1}\right)$	B	G $\left(10^{5} \mathrm{~Pa}\right)$	F_{D} (N)
$\bullet 0.75$	3.14 ± 0.14	3.50 ± 0.80	1.18 ± 0.39	32.16 ± 0.93
$\circ 1.50$	2.091 ± 0.074	4.74 ± 0.50	1.62 ± 0.39	68.1 ± 1.8

Fit vs Data

If $P_{\mathrm{G}}>25 \mathrm{kPa}$, spread $<2.5 \%$, individual points $<1.5 \%$!

Conclusions 1

- Model is very accurate at $P_{\mathrm{G}}>25 \mathrm{kPa}$.
- F_{D} increases by a factor of 1.3 to 2.1 when height is doubled.
- G is constant within error when height is doubled.
- G has correct order of magnitude.
- $G_{\text {exp }} \approx 10^{5} \mathrm{~Pa}$ vs $G_{\text {rubber }}=3 \times 10^{5} \mathrm{~Pa}$.

Conclusions 2

- Could include higher-order correction terms in the analysis if greater accuracy is desired at $P_{\mathrm{G}}<25 \mathrm{kPa}$.
- Ultimately, could go back to the specific forms of $A(x)$, $V(x), A_{\mathrm{p}}(x)$ and $\theta(x)$ for more accurate $F_{\mathrm{P}}(x)$ and $F_{\mathrm{W}}(x)$.
- Non-uniform dissipative forces?
- Non-isothermal compressions?

Acknowledgments

- Dr Alex Georgallas, Dalhousie University (Truro) co-author
- Dr Simon de Vet, Dalhousie University (Halifax) discussions related to time-of-flight methods
A. Georgallas, G. Landry. "The Coefficient of Restitution of Pressurized Balls: A Mechanistic Model." Submitted to Canadian Journal of Physics on 8 June 2015.

Experimental Method 1

Several methods exist to probe e

$$
\begin{equation*}
e=\left|\frac{v_{\mathrm{f}}}{v_{\mathrm{i}}}\right| \tag{28}
\end{equation*}
$$

v_{f} and v_{i} are related to several other quantities, like the height of bounces, times of flight, etc. In terms of typical accuracy

Time methods $>$ Height methods $>$ Velocity methods

Experimental Method 2

Since e depend on K_{i}, we need to control for K_{i}. Easiest way is to control for H_{i}, and study first impact.

Assuming no air resistance

$$
\begin{gather*}
v_{\mathrm{i}}=\sqrt{2 g H} \tag{29}\\
v_{\mathrm{f}}=\frac{1}{2} g t_{\mathrm{f}} \tag{30}
\end{gather*}
$$

Therefore

$$
\begin{equation*}
e=\sqrt{\frac{g t_{\mathrm{f}}}{8 H}} \tag{31}
\end{equation*}
$$

Experimental Method 3

- Manual release $(\pm<1 \mathrm{~cm})$ at 0.75 m and 1.50 m
- Sound-based time-of-flight measurement ($\pm<1 \mathrm{~ms}$)
- Inflated with bike pump, but accurate sensor ($\pm<0.5 \mathrm{kPa}$)
- At least 5 trials per pressure, per ball, per height

Ball \& Model	$R(\mathrm{~cm})$	$m(\mathrm{~g})$	$D_{\mathrm{W}}(\mathrm{mm})$
(Bask.) Wilson WTB0935	11.75 ± 0.15	592.9 ± 0.1	3.10 ± 0.09
(Socc.) Nike SC2400-471	10.80 ± 0.15	422.2 ± 0.1	4.51 ± 0.08
(Voll.) Wilson WTH3501	10.35 ± 0.15	271.2 ± 0.1	5.02 ± 0.28

