Motivation Turbulence Another Scale

Dynamics of Gravitational Collapse in AdS Space-Time

Andrew R. Frey

University of Winnipeg

arXiv:1410.1869 (PRL) with N. Deppe, A. Kolly, and G. Kunstatter work in progress with all of the above

Anti-de Sitter Spacetime

$$ds^{2} = -(1+r^{2})dt^{2} + \frac{dr^{2}}{1+r^{2}} + r^{2}d\Omega^{2}$$

AdS has a boundary

- Massless waves to $r=\infty$ in $t=\pi/2$
- Bounce back to origin
- Collapse is boundary value problem

Contrast with asymptotically flat

- Forms horizon or disperses
- Critical behavior near transition

(Choptuik 1993)

Motivation

AdS Spacetime AdS/CFT Instability

Turbulence

Another Scale

Anti-de Sitter Spacetime

$$ds^{2} = -(1+r^{2})dt^{2} + \frac{dr^{2}}{1+r^{2}} + r^{2}d\Omega^{2}$$

AdS has a boundary

- Massless waves to $r=\infty$ in $t=\pi/2$
- Bounce back to origin
- Collapse is boundary value problem

Contrast with asymptotically flat

- Forms horizon or disperses
- Critical behavior near transition

(Choptuik 1993)

Motivation

AdS Spacetime AdS/CFT Instability

Turbulence

Another Scale

Anti-de Sitter Spacetime

$$ds^{2} = -(1+r^{2})dt^{2} + \frac{dr^{2}}{1+r^{2}} + r^{2}d\Omega^{2}$$

AdS has a boundary

- Massless waves to $r=\infty$ in $t=\pi/2$
- Bounce back to origin
- Collapse is boundary value problem

Contrast with asymptotically flat

- Forms horizon or disperses
- Critical behavior near transition

(Choptuik 1993)

Motivatior

AdS Spacetime AdS/CFT Instability

Turbulence

Another Scale

Motivation AdS Spacetime AdS/CFT Instability

Turbulence

Another Scale

Future

Motivation

AdS/CFT Correspondence

Boundary conditions control solutions

- Build field theory on boundary
- Holographic correspondence Relates strong and weak coupling
- Best known $\operatorname{AdS}_5 \times S^5 \leftrightarrow \mathcal{N} = 4$ SYM Many examples
- Extremely well tested

- Black holes have temperature (Hawking)
- BH \Leftrightarrow thermal state on boundary sphere
- Collapse ⇔ thermalization of initial energy pulse
- Insight into dynamics far from equilibrium

Motivation AdS Spacetime AdS/CFT Instability

Turbulence

Another Scale

Future

Motivation

AdS/CFT Correspondence

Boundary conditions control solutions

- Build field theory on boundary
- Holographic correspondence Relates strong and weak coupling
- Best known $\operatorname{AdS}_5 \times S^5 \leftrightarrow \mathcal{N} = 4$ SYM Many examples
- Extremely well tested

- Black holes have temperature (Hawking)
- BH \Leftrightarrow thermal state on boundary sphere
- Collapse ⇔ thermalization of initial energy pulse
- Insight into dynamics far from equilibrium

- Turbulence
- Another Scale
- Future

AdS/CFT Correspondence

Boundary conditions control solutions

- Build field theory on boundary
- Holographic correspondence Relates strong and weak coupling
- Best known $\operatorname{AdS}_5 \times S^5 \leftrightarrow \mathcal{N} = 4$ SYM Many examples
- Extremely well tested

- Black holes have temperature (Hawking)
- BH \Leftrightarrow thermal state on boundary sphere
- Collapse ⇔ thermalization of initial energy pulse
- Insight into dynamics far from equilibrium

Turbulence

Another Scal

Future

Motivation

AdS/CFT Correspondence

Boundary conditions control solutions

- Build field theory on boundary
- Holographic correspondence Relates strong and weak coupling
- Best known $\operatorname{AdS}_5 \times S^5 \leftrightarrow \mathcal{N} = 4$ SYM Many examples
- Extremely well tested

- Black holes have temperature (Hawking)
- $\bullet \ \mathsf{BH} \Leftrightarrow \mathsf{thermal} \ \mathsf{state} \ \mathsf{on} \ \mathsf{boundary} \ \mathsf{sphere}$
- Collapse ⇔ thermalization of initial energy pulse
- Insight into dynamics far from equilibrium

Instability of AdS

Motivation AdS Spacetime AdS/CFT Instability

Turbulence

Another Scale

Future

Numerics suggest small perturbations lead to collapse

(Bizoń & Rostworowski, arXiv:1104.3702, PRL107, 031102 (2011))

Turbulence

Preliminaries

Many Bounce Perturbations

Another Scale

Future

Massless Scalars and Turbulence in AdS Preliminaries

Maybe not surprising that contained energy thermalizes

• Schwarzschild-like coordinates

$$ds^{2} = \sec^{2}(x) \left(-Ae^{-2\delta}dt^{2} + A^{-1}dx^{2} + \sin^{2}(x) d\Omega^{2} \right)$$

• Horizon at A = 0 (infinite boundary time) Effectively formed at fixed cut-off (mostly thermalized)

•
$$r = \tan x$$
 so boundary at $x = \pi/2$

- $\bullet\,$ Mass function M' gives mass in shell of radius R
- Original studies in AdS₄; here AdS₅

Turbulence

Preliminaries Many Bounces Perturbations

Another Scale

Future

Massless Scalars and Turbulence in AdS

Many Bounces

Interesting patterns emerge at strong coupling

Turbulence

Preliminaries Many Bounces Perturbations

Another Scale

Future

Massless Scalars and Turbulence in AdS

Many Bounces

Interesting patterns emerge at strong coupling

Turbulence

Preliminaries Many Bounces Perturbations

Another Scale

Mass Evolution

Future

Massless Scalars and Turbulence in AdS

Many Bounces

Turbulence Preliminaries Many Bounce Perturbations

Another Scale

Future

Massless Scalars and Turbulence in AdS

Turbulence & Perturbation Theory

Insight from perturbation theory?

Scalar eigenmodes of AdS have integrally-spaced frequencies

- Secular growth beyond 1st order Maximal resonance
- But many removed by frequency shifts
- Improved perturbation theory

(Balasubramanian, et al.; Craps, Evnin, Vanhoof)

• Some simple modes quasi-periodic But which ones & for how long?

Technically difficult to answer

Turbulence Preliminaries Many Bounce Perturbations

Another Scale

Future

Massless Scalars and Turbulence in AdS

Turbulence & Perturbation Theory

Insight from perturbation theory?

Scalar eigenmodes of AdS have integrally-spaced frequencies

- Secular growth beyond 1st order Maximal resonance
- But many removed by frequency shifts
- Improved perturbation theory

(Balasubramanian, et al.; Craps, Evnin, Vanhoof)

- Some simple modes quasi-periodic But which ones & for how long?
- Technically difficult to answer

Turbulence Preliminaries Many Bounce Perturbations

Another Scale

Future

Massless Scalars and Turbulence in AdS

Turbulence & Perturbation Theory

Insight from perturbation theory?

Scalar eigenmodes of AdS have integrally-spaced frequencies

- Secular growth beyond 1st order Maximal resonance
- But many removed by frequency shifts
- Improved perturbation theory

(Balasubramanian, et al.; Craps, Evnin, Vanhoof)

- Some simple modes quasi-periodic But which ones & for how long?
- Technically difficult to answer

Turbulence Preliminaries Many Bounce Perturbations

Another Scale

Future

Massless Scalars and Turbulence in AdS

Turbulence & Perturbation Theory

Insight from perturbation theory?

Scalar eigenmodes of AdS have integrally-spaced frequencies

- Secular growth beyond 1st order Maximal resonance
- But many removed by frequency shifts
- Improved perturbation theory

(Balasubramanian, et al.; Craps, Evnin, Vanhoof)

• Some simple modes quasi-periodic But which ones & for how long?

• Technically difficult to answer

Turbulence

Another Scale

Importance Massive Scalar Curvature²

Future

Another Scale

The Importance of Scales

Two scales for massless scalar: AdS radius & pulse width

- Planck scale factors out
- AdS radius important globally, not locally
- Possible interplay for very wide pulses

- Ratios of scales important
- Possible local importance at horizon size

Turbulence

Another Scale

Importance Massive Scalar Curvature²

Future

Another Scale

The Importance of Scales

Two scales for massless scalar: AdS radius & pulse width

- Planck scale factors out
- AdS radius important globally, not locally
- Possible interplay for very wide pulses

- Ratios of scales important
- Possible local importance at horizon size

Turbulence

Another Scale

Importance Massive Scalar Curvature²

Future

Another Scale

The Importance of Scales

Two scales for massless scalar: AdS radius & pulse width

- Planck scale factors out
- AdS radius important globally, not locally
- Possible interplay for very wide pulses

- Ratios of scales important
- Possible local importance at horizon size

Turbulence

Another Scale

Importance Massive Scalar Curvature²

Future

Another Scale

The Importance of Scales

Two scales for massless scalar: AdS radius & pulse width

- Planck scale factors out
- AdS radius important globally, not locally
- Possible interplay for very wide pulses

- Ratios of scales important
- Possible local importance at horizon size

Turbulence

Another Scale Importance Massive Scalars Curvature²

Future

Another Scale

Massive Scalars

Modify scalar dynamics: easiest is adding a mass

- Pulse width vs Compton $\lambda_C=1/\mu$
- Wide pulses lead to radius gap
- Common behavior w/extra scales

What happens in AdS? To appear on arXiv soon! (see also Okawa, Lopes, Cardoso arXiv:1504.05203)

- Related to CFT irrelevant operators
- Comparison to AdS scale also
- Massive scalars still confined by gravitational potential
- Initial width important? Does bouncing change behavior?
- Most ratios of scales similar to massless

Another Scale

Massive Scalars

Turbulence

Another Scale Importance Massive Scalars Curvature²

Future

Another Scale

Massive Scalars

Hints of a new class of quasi-stable solutions

Turbulence

Another Scale Importance Massive Scalars Curvature²

Future

Another Scale

Massive Scalars

Hints of a new class of quasi-stable solutions

Iurbulence

Another Scale Importance Massive Scalars Curvature²

Future

Another Scale

Higher-Curvature Gravity

Modify gravitational dynamics

- Higher powers of curvature expected from QM
- May impact formation of small horizons
- Represents non-infinite coupling in dual theory Curvature² ⇔ distinct central charges

We will consider adding Gauss-Bonnet term in 5D

- Still second-order equations of motion
- No black holes allowed below critical mass
- Also dynamical radius gap
- Small-scale "anti-gravity"
- Similarities and differences vs AdS₃

lurbulence

Another Scale Importance Massive Scalars Curvature²

Future

Another Scale

Higher-Curvature Gravity

Modify gravitational dynamics

- Higher powers of curvature expected from QM
- May impact formation of small horizons
- Represents non-infinite coupling in dual theory Curvature² ⇔ distinct central charges

We will consider adding Gauss-Bonnet term in 5D

- Still second-order equations of motion
- No black holes allowed below critical mass
- Also dynamical radius gap
- Small-scale "anti-gravity"
- Similarities and differences vs AdS₃

Turbulence

Another Scale Importance Massive Scalars Curvature²

Future

Another Scale

Higher-Curvature Gravity

Complex behavior near critical points

Turbulence

Another Scale Importance Massive Scalars Curvature²

Future

Another Scale

Higher-Curvature Gravity

Complex behavior near critical points

Another Scale

Higher-Curvature Gravity

Complex behavior near critical points

Another Scale Importance Massive Scalars Curvature²

Turbulence

Another Scale Importance Massive Scalars Curvature² Mass Evolution

Future

Another Scale

Higher-Curvature Gravity

Future Directions

Turbulence

Another Scale

- Further analysis of EGB gravity & massive scalars
- Also, conformally coupled and tachyonic scalars
- Other boundary conditions ⇔ new operators in boundary Hamiltonian
- Interpretation in boundary theory
- Incorporating Hawking radiation

Future Directions

Turbulence

Another Scale

Future

- Further analysis of EGB gravity & massive scalars
- Also, conformally coupled and tachyonic scalars
- Other boundary conditions ⇔ new operators in boundary Hamiltonian
- Interpretation in boundary theory
- Incorporating Hawking radiation

THANK YOU