Dynamics of Gravitational Collapse in AdS Space-Time

Andrew R. Frey

University of Winnipeg

work in progress with all of the above
Motivation

Anti-de Sitter Spacetime

\[ds^2 = -(1 + r^2) dt^2 + \frac{dr^2}{1 + r^2} + r^2 d\Omega^2 \]

AdS has a boundary

- Massless waves to \(r = \infty \) in \(t = \pi/2 \)
- Bounce back to origin
- Collapse is boundary value problem

Contrast with asymptotically flat

- Forms horizon or disperses
- Critical behavior near transition

(*Choptuik 1993*)
Motivation

Anti-de Sitter Spacetime

\[ds^2 = -(1 + r^2) dt^2 + \frac{dr^2}{1 + r^2} + r^2 d\Omega^2 \]

AdS has a boundary
- Massless waves to \(r = \infty \) in \(t = \pi/2 \)
- Bounce back to origin
- Collapse is boundary value problem

Contrast with asymptotically flat
- Forms horizon or disperses
- Critical behavior near transition

(*Choptuik 1993*)
Motivation

Anti-de Sitter Spacetime

$$ds^2 = -(1 + r^2)dt^2 + \frac{dr^2}{1 + r^2} + r^2 d\Omega^2$$

AdS has a boundary

- Massless waves to $r = \infty$ in $t = \pi/2$
- Bounce back to origin
- Collapse is boundary value problem

Contrast with asymptotically flat

- Forms horizon or disperses
- Critical behavior near transition

(Choptuik 1993)
Motivation

AdS/CFT Correspondence

Boundary conditions control solutions
- Build field theory on boundary
- Holographic correspondence
 Relates strong and weak coupling
- Best known $\text{AdS}_5 \times S^5 \leftrightarrow \mathcal{N} = 4 \text{ SYM}$
 Many examples
- Extremely well tested

What does collapse represent?
- Black holes have temperature (Hawking)
- BH \leftrightarrow thermal state on boundary sphere
- Collapse \leftrightarrow thermalization of initial energy pulse
- Insight into dynamics far from equilibrium
Motivation

AdS/CFT Correspondence

Boundary conditions control solutions
- Build field theory on boundary
- Holographic correspondence
 Relates strong and weak coupling
- Best known $\text{AdS}_5 \times S^5 \leftrightarrow \mathcal{N} = 4 \text{ SYM}$
 Many examples
- Extremely well tested

What does collapse represent?
- **Black holes have temperature** (Hawking)
- BH \leftrightarrow thermal state on boundary sphere
- Collapse \leftrightarrow thermalization of initial energy pulse
- Insight into dynamics far from equilibrium
Motivation

AdS/CFT Correspondence

Boundary conditions control solutions
- Build field theory on boundary
- Holographic correspondence
 Relates strong and weak coupling
- Best known $\text{AdS}_5 \times S^5 \leftrightarrow \mathcal{N} = 4 \text{ SYM}$
 Many examples
- Extremely well tested

What does collapse represent?
- Black holes have temperature (Hawking)
- BH \leftrightarrow thermal state on boundary sphere
- Collapse \leftrightarrow thermalization of initial energy pulse
- Insight into dynamics far from equilibrium
Motivation

AdS/CFT Correspondence

Boundary conditions control solutions
- Build field theory on boundary
- Holographic correspondence
 Relates strong and weak coupling
- Best known $\text{AdS}_5 \times S^5 \leftrightarrow \mathcal{N} = 4 \text{ SYM}$
 Many examples
- Extremely well tested

What does collapse represent?
- Black holes have temperature (Hawking)
- BH \leftrightarrow thermal state on boundary sphere
- Collapse \leftrightarrow thermalization of initial energy pulse
- Insight into dynamics far from equilibrium
Motivation
Instability of AdS

Numerics suggest small perturbations lead to collapse

Massless Scalars and Turbulence in AdS

Preliminaries

Maybe not surprising that contained energy thermalizes

- Schwarzschild-like coordinates

\[ds^2 = \sec^2(x) \left(-Ae^{-2\delta} dt^2 + A^{-1} dx^2 + \sin^2(x) d\Omega^2 \right) \]

- Horizon at \(A = 0 \) (infinite boundary time)
 Effectively formed at fixed cut-off (mostly thermalized)

- \(r = \tan x \) so boundary at \(x = \pi/2 \)

- Mass function \(M' \) gives mass in shell of radius \(R \)

- Original studies in AdS\(_4\); here AdS\(_5\)
Massless Scalars and Turbulence in AdS

Many Bounces

Interesting patterns emerge at strong coupling
Massless Scalars and Turbulence in AdS

Interesting patterns emerge at strong coupling
Massless Scalars and Turbulence in AdS

Many Bounces

Mass Evolution

\[M' \]
Massless Scalars and Turbulence in AdS

Turbulence & Perturbation Theory

Insight from perturbation theory?

Scalar eigenmodes of AdS have integrally-spaced frequencies

- Secular growth beyond 1st order
- Maximal resonance
- But many removed by frequency shifts
- Improved perturbation theory

 (Balasubramanian, et al.; Craps, Evnin, Vanhoof)

- Some simple modes quasi-periodic
- But which ones & for how long?
- Technically difficult to answer
Massless Scalars and Turbulence in AdS

Turbulence & Perturbation Theory

Insight from perturbation theory?

Scalar eigenmodes of AdS have integrally-spaced frequencies

- Secular growth beyond 1st order
 Maximal resonance
- But many removed by frequency shifts
- Improved perturbation theory
 \((\text{Balasubramanian, et al.; Craps, Evnin, Vanhoof}) \)
- Some simple modes quasi-periodic
 But which ones & for how long?
- Technically difficult to answer
Massless Scalars and Turbulence in AdS

Turbulence & Perturbation Theory

Insight from perturbation theory?

Scalar eigenmodes of AdS have integrally-spaced frequencies

- Secular growth beyond 1st order
 - Maximal resonance
- But many removed by frequency shifts
- Improved perturbation theory
 \[(Balasubramanian, \text{ et al.}; \text{Craps, Evnin, Vanhoof})\]
- Some simple modes quasi-periodic
 - But which ones & for how long?
- Technically difficult to answer
Massless Scalars and Turbulence in AdS

Turbulence & Perturbation Theory

Insight from perturbation theory?

Scalar eigenmodes of AdS have integrally-spaced frequencies

- Secular growth beyond 1st order
 Maximal resonance
- But many removed by frequency shifts
- Improved perturbation theory
 \((\text{Balasubramanian, et al.}; \text{Craps, Evnin, Vanhoof}) \)
- Some simple modes quasi-periodic
 But which ones & for how long?
- Technically difficult to answer
Another Scale
The Importance of Scales

Two scales for massless scalar: AdS radius & pulse width
- Planck scale factors out
- AdS radius important globally, not locally
- Possible interplay for very wide pulses

A new scale gives richer physics
- Ratios of scales important
- Possible local importance at horizon size
Another Scale

The Importance of Scales

Two scales for massless scalar: AdS radius & pulse width

- Planck scale factors out
- AdS radius important globally, not locally
- Possible interplay for very wide pulses

A new scale gives richer physics

- Ratios of scales important
- Possible local importance at horizon size

Motivation
Turbulence
Another Scale
Importance
Massive Scalars
Curvature²
Future
Another Scale
The Importance of Scales

Two scales for massless scalar: AdS radius & pulse width

- Planck scale factors out
- AdS radius important globally, not locally
- Possible interplay for very wide pulses

A new scale gives richer physics
- Ratios of scales important
- Possible local importance at horizon size
Another Scale
The Importance of Scales

Two scales for massless scalar: AdS radius & pulse width
- Planck scale factors out
- AdS radius important globally, not locally
- Possible interplay for very wide pulses

A new scale gives richer physics
- Ratios of scales important
- Possible local importance at horizon size
Modify scalar dynamics: easiest is adding a mass

- Pulse width vs Compton $\lambda_C = 1/\mu$
- Wide pulses lead to radius gap
- Common behavior w/extra scales

What happens in AdS? To appear on arXiv soon!

(see also Okawa, Lopes, Cardoso arXiv:1504.05203)

- Related to CFT irrelevant operators
- Comparison to AdS scale also
- Massive scalars still confined by gravitational potential
- Initial width important? Does bouncing change behavior?
- Most ratios of scales similar to massless
Another Scale
Massive Scalars

 mostrum Evolution
An intriguing example (AdS scale) > width > Compton:

Hints of a new class of quasi-stable solutions
An intriguing example (AdS scale) $> \text{width} > \text{Compton}$:

Hints of a new class of quasi-stable solutions
Another Scale
Higher-Curvature Gravity

Modify gravitational dynamics
- Higher powers of curvature expected from QM
- May impact formation of small horizons
- Represents non-infinite coupling in dual theory
 \(\text{Curvature}^2 \Leftrightarrow \text{distinct central charges} \)

We will consider adding Gauss-Bonnet term in 5D
- Still second-order equations of motion
- No black holes allowed below critical mass
- Also dynamical radius gap
- Small-scale “anti-gravity”
- Similarities and differences vs AdS\(_3\)
Another Scale

Higher-Curvature Gravity

Modify gravitational dynamics

- Higher powers of curvature expected from QM
- May impact formation of small horizons
- Represents non-infinite coupling in dual theory
 \[\text{Curvature}^2 \Leftrightarrow \text{distinct central charges} \]

We will consider adding Gauss-Bonnet term in 5D

- Still second-order equations of motion
- No black holes allowed below critical mass
- Also dynamical radius gap
- Small-scale “anti-gravity”
- Similarities and differences vs AdS$_3$
Another Scale
Higher-Curvature Gravity

Complex behavior near critical points

![Graph showing complex behavior near critical points](image-url)
Another Scale
Higher-Curvature Gravity

Complex behavior near critical points
Another Scale

Higher-Curvature Gravity

Complex behavior near critical points

- No Bounces
- One Bounce
Another Scale
Higher-Curvature Gravity

Mass Evolution
Future Directions

- Further analysis of EGB gravity & massive scalars
- Also, conformally coupled and tachyonic scalars
- Other boundary conditions ⇔ new operators in boundary Hamiltonian
- Interpretation in boundary theory
- Incorporating Hawking radiation
Future Directions

- Further analysis of EGB gravity & massive scalars
- Also, conformally coupled and tachyonic scalars
- Other boundary conditions \Leftrightarrow new operators in boundary Hamiltonian
- Interpretation in boundary theory
- Incorporating Hawking radiation

THANK YOU