MOLLER

Measurement Of a Lepton Lepton Electroweak Reaction using Parity Violating Electron-Electron Scattering **MOLLER**
 u Lepton Lepton Electrowe

using

ng Electron-Electron Sca

reasurement of the electron w
 $Q_{W}^{e} = -(1 - 4 \sin^2 \theta_W)$

ohysics beyond the Standard N

015 I RP Town Hall Meeting **MOLLER**
pton Lepton Electroweak Reaction
ising
Electron-Electron Scattering
grement of the electron weak charge:
= -(1 - 4 sin² θ_{w})
cs beyond the Standard Model

A proposed 2.4% measurement of the electron weak charge:

$$
Q_W^e = -(1 - 4\sin^2\theta_W)
$$

A test for physics beyond the Standard Model

2015 LRP Town Hall Meeting CAP meeting 2015

Michael Gericke (University of Manitoba)

On behalf of the Canadian MOLLER group

The MOLLER Experiment

The MOLLER Experiment

- Beam: $P_e \ge 90\%$
- LH2 Target: $\ell = 150$ *cm* $\qquad \qquad \mathcal{L} = 3 \times 10^{39}$ *cm*⁻² · s⁻¹
- Scattering range: $0.3 \le \theta \le 1.1$ deg
- Separate into e-e , e-p , and inelastic bins using two toroidal spectrometers
- Measure scattering angle with tracking detectors

The MOLLER Experiment

Technical Challenges:

- \Box 150 GHz scattered electron rate (up to 0.1 GHz/cm²)
	- 2 kHz beam helicity reversal
	- 80 ppm pulse-to-pulse statistical fluctuations
- \Box 1 nm control of beam centroid on target
	- Improved methods of "slow helicity reversal"
- \Box Liquid hydrogen target with $\rho > 10$ gm/cm²
	- \cdot 1.5 m: ~ 4 kW @ 60 µA
- \Box Full Azimuthal acceptance with $\Theta_{lab} \sim 5$ milliradians
	- novel two-toroid spectrometer
	- radiation hard, highly segmented integrating detectors
- Robust and Redundant 0.4% beam polarimetry
	- Pursue both Compton and Atomic Hydrogen techniques

The Facility

Parity Violating Electron Scattering (PVeS) at JLAB

A 4th generation JLab PVeS Experiment, with expertise from:

> MIT Bates, SLAC E158, JLab G0 HAPPEX, PREX and QWeak.

There is a lot of expertise within the JLab user community, but …

> MOLLER is more challenging than previous PVeS experiments and would greatly benefit from HEP expertise!

Hall A

The MOLLER Observable

The flux (N±) of scattered electrons will be measured as a function of initial
electron helicity (±) and an asymmetry is formed:
 $A_{\text{msr}} = \frac{N^+ - N^-}{2} = P_e \left(f_p A_p + \sum A_b f_b \right) + A_i$
 γ , Z° electron helicity (\pm) and an asymmetry is formed: e **-**

Area electrons will be measured as a function
d an asymmetry is formed:

$$
A_{\text{msr}} = \frac{N^+ - N^-}{N^+ + N^-} = P_e \left(f_p A_p + \sum_b A_b f_b \right) + A_i
$$

$$
P_e = electron polarization
$$
\n
$$
f_p = flux fraction from desired physics signal
$$
\n
$$
f_b = flux fraction from background signal
$$
\n
$$
A_p = physics asymmetry
$$
\n
$$
A_b = background asymmetries
$$
\n
$$
A_i = instrumental (false) asymmetries
$$

SM predicted asymmetry 35 ppb - directly related to the weak charge of the electron:

$$
A_p = mE \frac{G_F}{\sqrt{2}\pi\alpha} \frac{4\sin^2\theta}{\left(3+\cos^2\theta\right)^2} Q_W^e
$$

$$
Q_W^e = (1 - 4\sin^2\theta_W)
$$

At tree level, with no new physics

e **-**

 γ , Z°

 γ , $Z^{\rm o}$

MOLLER Physics

Propose to measure A_p to 2% (0.73 ppb)

MOLLER Physics

Propose to measure A_p to 2% (0.73 ppb)

 $\delta(\sin^2 \theta_W) = \pm 0.00024$ (stat.) ± 0.00013 (syst.) \Rightarrow ~0.1%
Would match best collider (Z-pole) measurements.
Best contact interaction reach for leptons at low OR high energy
To do better for a 4-lepton contact interacti Would match best collider (Z-pole) measurements. Best contact interaction reach for leptons at low OR high energy.

To do better for a 4-lepton contact interaction would require:

MOLLER Physics

Propose to measure A_p to 2% (0.73 ppb)

$$
\mathcal{S}\left(Q_{W}^{e}\right)=\pm2.1\%(\text{stat.})\pm1.1\%(\text{syst.})
$$

New Physics Sensitivities

New (effective) Contact Interactions:

Induced by a range of new physics scenarios:

e

- low scale quantum gravity with large extra dimensions
- composite fermions,
- leptoquarks,
- heavy Z_0 bosons

New Physics Complementarity **tarity**
 $z + A_{new} |^2 \Rightarrow A_z^2 \Bigg[1 + \Bigg(\frac{A}{A} \Bigg)$

interference term! **ITarity**
 $A_z + A_{new} \rvert^2 \Rightarrow A_z^2 \left[1 + \left(\frac{A_{new}}{A_z} \right)^2 \right]$

interference term!

ght boson: "dark Z" arity

+ $A_{new} \rvert^2 \Rightarrow A_Z^2 \left[1 + \left(\frac{A_{new}}{A_Z} \right)^2 \right]$

erference term!

t boson: "dark Z"

QM: Common language across energy scales:

For resonances (Z₀) A_Z is imaginary $\begin{array}{|l|} \hline \end{array}$ No interference term! $\left[1+\left(\frac{A_{new}}{A_{Z}}\right)^{2}\right]$

Additionally, A_{new} could be mediated by a new light boson: "dark Z''

$$
\delta(\sin^2 \theta_W) = \pm 0.00024(\text{stat.}) \pm 0.00013(\text{syst.}) \quad \Rightarrow \quad -0.1\%
$$

2

 A_{new} ⁻

 A_{7} | |

Z

 $\lambda^2 \Rightarrow A_z^2 | 1 + \left| \frac{A_{\text{new}}}{4} \right|$

Equipment…

The Spectrometer / Collimator

Separate events into e-e , e-p , and inelastic bins, using two spectrometers.

- Accept all (forward and backward) Møllers in the range $60 \leq \theta_{\text{COM}} \leq 120$ deg
- Clean separation of elastic and inelastic electron-proton scattering events
- Placement of detectors out of the line-of-sight of the target
- Clean channel for the degraded beam and the bremsstrahlung photons to beam dump
- Minimization of soft photon backgrounds by designing a "two-bounce" system

Event Distribution

In the "focal plane":

Simulated radial distribution, as a function of distance from the center of the beam line:

Proper separation of e-e , e-p , and inelastic events requires radial and azimuthal detector segmentation …

The Detectors

The Detectors

Divide each ring into azimuthal sectors:

Current design calls for 224 channels Rate per channel: \sim few MHz to GHz Acquisition mode: Flux Integrating \blacktriangleright No event cuts possible **Low background by design** Radiation dose: 15 to 50 Mrad

Quartz DIRC + Air-Core light guide with PMT (or better alternatives)

Tracking

Ideally want to measure vertex angle and energy:

The vertex angle and energy:
$$
\kappa_{vertex} = E_{vertex} \frac{4 \sin^2 \theta_{vertex}}{(3 + \cos^2 \theta_{vertex})^2}
$$
\n
$$
E \frac{4 \sin^2 \theta}{(3 + \cos^2 \theta)^2} Q_W^e
$$
\nRight radiation environment

\ntracking runs at lower current

\nthere $\kappa_{vertex} = E_{vertex} \frac{4 \sin^2 \theta_{vertex}}{(3 + \cos^2 \theta_{vertex})^2}$

Using

\nwith the measure vertex angle and energy:

\n
$$
\kappa_{vertex} = E_{vertex} \frac{4 \sin^2 \theta_{vertex}}{\left(3 + \cos^2 \theta_{vertex}\right)^2}
$$
\n
$$
A_p = m \frac{G_F}{\sqrt{2 \pi \alpha}} \left(E \frac{4 \sin^2 \theta}{\left(3 + \cos^2 \theta\right)^2} \right) Q_W^e
$$
\nwe of high rate, high radiation environment

\ndo dedicated tracking runs at lower current

\nthe same spectrometer technology:

Challenge of high rate, high radiation environment do dedicated tracking runs at lower current

Downstream spectrometer technology:

GEMs (triple stack)

Resolution: 200 μ m in radius , 1 mm in ϕ Rates: 20 kHz / cm 2 Active Area: 60 cm × 20 cm

Tracking

Ideally want to measure vertex angle and energy:

 $(\texttt{3}+\texttt{COS}^{-}\ \theta_{vertex})$ θ . K \equiv ϵ θ . 1 \equiv ϵ yentex $\frac{1}{\epsilon}$ + $\cos^2\theta$ 2 α 2 2 α $4\sin^2\theta_{vertex}$ $4 \sin^2 \theta_{vertex}$
3 + cos² θ_{vertex})² *vertex* $\text{vertex} = E_{\text{vertex}} \frac{4s}{(3+c)}$ *vertex E*

Upstream tracker not yet proposed (but needed) !

Rad hard CMOS Si ?

Other ?

Would be nice to run those at higher rates …

Polarimetry

Compton polarimeter (also M ϕ ller, not shown here):

Stable beam polarization at Jefferson Lab has been measured to be up to 89%. The experimental requirement for relative accuracy in beam polarization is 0.4%

The currently installed:

GSO crystal scintillator Photon calorimeter 4 planes of silicon micro-strip electron detectors

Possible upgrades:

Diamond detectors / new electronics

Polarimetry

Compton polarimeter:

Due to background rejection and radiation hardness requirements, an upgrade to diamond-strip detectors is considered:

Sample detector:

10 mm x 10 mm x 0.5 mm polycrystalline Chemical Vapor Deposition (pCVD) diamond

Strip pitch 200 μm Strip width 175 μm Gap 25 μm

200 µm r photolithography

Univ. of Winnipeg QWeak prototype

۰

Status and Outlook

- Experiment approved at Jefferson Laboratory with highest rating
- High priority in the US NSAC LRP
- \$25M Scale (\$20M from DOE MIE)
- US groups have R&D funding from NSF and DOE
- Successful DOE science review in September 2014
- Technical Feasibility and Directors review in 2015
- Projected date for start of installation: 2019-2020 (3 years running)
- Canadian group currently holds a two year R&D NSERC grant
- R&D in full swing on spectrometer and detectors
- We will go back for NSERC R&D (Operating & RTI) … CFI later ?

- Juliette Mammei (U. Manitoba) is a member of the MOLLER Executive Board
- Spectrometer design and optics: Juliette Mammei work package leader (WPL)
- Integrating detectors: Michael Gericke (WPL)
- Integrating electronics: Michael Gericke (TRIUMF… hopefully… cont. Qweak)
- Compton polarimeter electron detectors: Juliette Mammei
- Theory: A. Aleksejevs, S. Barkanova (in Canada)
- Upstream tracking: ?????
- Other good (Canadian) ideas: ?????

Table 2: Projected needed manpower additions to what is listed above for 2017 and beyond.

Table 3: Estimated Optimum MOLLER Funding Levels.

Funding Year	Amount	Comments
2017-18	\$330k	4 students, 2 RAs, \$96k in travel
	\$50k	First half of the integrating ADC channels (RTI or maybe par of a CFI)
	\$325k	First half of the the quartz bars (most likely would have to be a CFI)
2018-19	\$330k	4 students, 2 RAs, \$96k in travel
	\$50k	Second half of the integrating ADC channels (RTI or maybe par of a CFI)
	\$325k	Second half of the the quartz bars (most likely would have to be a CFI)
2019-23	\$426k	4 students, 2 RAs, \$192k in travel
2023-24	\$334k	4 students, 2 RAs, \$100k in travel
2024-25	\$239k	4 students, 1 RA, \$80k in travel
2025-26	\$157k	2 students, 1 RA, \$40k in travel

Table 4: Estimated Minimum MOLLER Funding Levels.

The Current Canadian Group

University of Manitoba: Jim Birchall, Michael Gericke, Juliette Mammei, Shelley Page, Willem van Oers

University of Winnipeg: Blair Jamieson, Jeff Martin, Russel Mammei

University of Northern British Columbia: Elie Korkmaz

Acadia University: Svetlana Barkanova

Memorial University: Aleksandrs Aleksejevs

The Canadian contingent needs to grow. We would welcome more collaborators !

Contributions could be made in:

- **Detector Design / Construction**
- **Tracking**
- **Simulations**

The MOLLER Collaboration

J. Benesch, P. Brindza, R.D. Carlini, J-P. Chen, E. Chudakov, S. Covrig, C.W. de Jager, A. Deur, D. Gaskell, J. Gomez, D.W. Higinbotham, J. LeRose, D. Mack, R. Michaels, B. Moffit, S. Nanda, G.R. Smith, P. Solvignon, R. Suleiman, B. Wojtsekhowski **(Jefferson Lab)** , H. Baghdasaryan, G. Cates, D. Crabb, D. Day, M.M. Dalton, C. Hanretty, N. Kalantarians, N. Liyanage, V.V. Nelyubin, B. Norum, K. Paschke, M. Shabestari, J. Singh, A. Tobias, K. Wang, X. Zheng **(University of Virginia**), J. Birchall, M.T.W. Gericke, W.R. Falk, L. Lee, S.A. Page, W.T.H. van Oers, **(University of Manitoba),** S. Johnston, **K.S. Kumar**, J. Mammei, L. Mercado, R. Miskimen, S. Riordan, J. Wexler **(University of Massachusetts, Amherst),** V. Bellini, A. Giusa, F. Mammoliti, G. Russo, M.L. Sperduto, C.M. **Sutera (INFN Sezione di Catania and Universita' di Catania),** D.S. Armstrong, T.D. Averett, W. Deconinck, J. Katich, J.P. Leckey **(College of William & Mary),** K. Grimm, K. Johnston, N. Simicevic, S. Wells **(Louisiana Tech University),** L. El Fassi, R. Gilman, G. Kumbartzki, R. Ransome **(Rutgers University),** J. Arrington, K. Hafidi, P.E. Reimer, J. Singh **(Argonne National Lab)**, P. Cole, D. Dale, T.A. Forest, D. McNulty **(Idhao State University**), E. Fuchey, F. Itard, C. Muñoz Camacho **(LPC Clermont, Universitè Blaise Pascal),** J.H. Lee, P.M. King, J. Roche **(Ohio University),** E. Cisbani, S. Frullani, F. Garibaldi **(INFN Gruppo Collegato Sanita' and Istituto Superiore di Sanitá),** R. De Leo, L. Lagamba, S. Marrone **(INFN, Sezione di Bari and University di Bari),** F. Meddi, G.M. Urciuoli **(Dipartimento di Fisica dell'Universita' la Sapienza and INFN Sezione di Roma),** R. Holmes, P. Souder **(Syracuse University),** G. Franklin, B. Quinn **(Carnegie Mellon University),** W. Duvall, A. Lee, M. Pitt **(Virginia Polytechnic Institute and State University),** J.A. Dunne, D. Dutta **(Mississippi State University),** A.T. Katramatou, G. G. Petratos **(Kent State University),** A. Ahmidouch, S. Danagoulian **(North Carolina A&T State University),** S. Kowalski, V. Sulkosky **(MIT) ,** P. Decowski **(Smith College),** J. Erler **(Universidad Autónoma de México) ,** M.J. Ramsey-Musolf **(University of Wisconsin, Madison),** Yu.G. Kolomensky **(University of California, Berkeley),** K. A. Aniol **(California State U.(Los Angeles)) ,** C.A. Davis, W.D. Ramsay **(TRIUMF) ,** J.W. Martin **(University of Winnipeg),** E. Korkmaz **(University of Northern British Columbia) ,**T. Holmstrom **(Longwood University),** S.F. Pate **(New Mexico State University),** G. Ron **(Hebrew University of Jerusalem),** D.T. Spayde (**Hendrix College),** P. Markowitz **(Florida International University),** F.R. Wesselmann **(Xavier University of Louisiana),** F. Maas **(Johannes Gutenberg Universitaet Mainz),** C. Hyde**(Old Dominion University),** F. Benmokhtar **(Christopher Newport University),** E. Schulte **(Temple University),** M. Capogni **(Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti ENEA and INFN Gruppo Collegato Sanitá),** R. Perrino **(INFN Sezione di Lecce)**

Thank You!

Additional slides for your reference to follow …

Kinematics and Collimators

The proposed collimator /spectrometer design aims to accept all (forward and backward) Møller-scattered electrons in the range:

With 100% azimuthal acceptance.

New Physics Sensitivities

New heavy spin 1 gauge boson U(1)' :

New Physics Sensitivities

New heavy spin 1 gauge boson U(1)' :

The Spectrometer

The Spectrometer

Experiment Overview

For MOLLER the facility is an integral part of the experiment!

Determined (primarily) at the source: 180° Bending **Elements Spreader** 445 MeV • Fast helicity reversal 1245 Mer ARC 2045 MeV ARC₅ • High polarization 2845 MeV ARC1 3645 MeV ARC9 • Charge Asymmetry **Recirculation North Linac Arcs** (400 MeV) **Recombiner Helium Refrigerator Recombiner** $5MeV$ **Pre-acceleration 45 MeV South Linac** Injector **Spin Polarized** (400 MeV) 845 MeV ARC₂ **Rotators Source** 1645 MeV ARC_A 2445 MeV $ARC₆$ 3245 MeV **Spreader** ARC₈ **Extraction Elements Beam Switchyard End Stations** 2015-06-14 2015-06-14 34

Experiment Overview

Helicity reversal:

Continuously at 2 kHz, with Pockels cell

 Every 4 to 8 hours with insertable halfwave plate

 Every Couple of weeks with a spin rotation (Wein flip)

The Detectors

Current detector reference design: **DIRC**

Synthetic Quartz:

- Radiation hard
- High threshold for hadrons
- No scintillation
- UV light sensitive readout (PMT)
- Air-core lightguide (problematic)
- Possible alternatives now exist (rad hard UV sensitive CMOS based Si detectors ?)

Integrating Detector Signals

Signal Chain:

Bandwidth Issues:

Competing Bandwidth Considerations: Favoring Large Bandwidth :

> • **provides ADC sample distribution large enough to average out the bit noise**

• **allows the sampling to follow the signal during helicity state transitions**

• **Since the asymmetry is much smaller than the ADC resolution, filtering away the "high" frequency components leads to random loss of helicity information.**

• **If the helicity reversal rate goes up, then the analog bandwidth has to go up as well: need a large enough spread to determine the helicity variation for each window**

• **Satisfying the Nyquist rule up to the frequencies we care about**

Competing Bandwidth Considerations:

Favoring "Smaller" Bandwidth :

• **the analog bandwidth one can handle is limited by the maximum sampling rate in the module**

• **large bandwidths pick up high frequency, large amplitude signals and increase the data RMS and/or introduce systematic effects (non-Gaussian)**

RMS width in the data stream:

Example:
$$
G_{pMT} = 1000
$$
 $G_{AMP} = 0.5$ M Ω
\n $N_{pe} \approx 20 \Rightarrow q = 32 \times 10^{-16} C$ / track
\n $i_A = 1.6R_eN_{pe}G_{PMT} \times 10^{-10} nA = 16 \mu A$
\n $B = \frac{1}{2} \cdot 2000$ Hz equivalent noise bandwidth
\n $\sigma_{Short} = \sqrt{2qi_A} \cdot \sqrt{B} \approx 10$ $nA \approx 5$ mV
\nNote that: $\frac{1}{\sqrt{N}} = \sqrt{\frac{2000 \text{ Hz}}{R_e}} = 632 \text{ ppm}$
\nand $\frac{\sigma_{Short}}{i_A} = \frac{0.01 \mu A}{16 \mu A} = 625 \text{ ppm}$

Preamplifier

- Reduced power supply noise
- Switchable gains

TRIUMF VME integrator

component side: solder side:

Fast Spin Reversal

The faster the helicity reversal the better the approximation of the signal as a linear drift for many experimental effects. **Fast Sp**

e faster the

e better the

e better the

proximation of

e signal as a

car drift for

my experimental

ects.

cally the signal "looks like" a

car function of time:
 $S_{\pm}(t) \approx \left(a + \frac{\Delta S}{\Delta t}t\right) (1 \pm A)$

e qua

Locally the signal "looks like" a linear function of time:

$$
S_{\pm}(t) \simeq \left(a + \frac{\Delta S}{\Delta t} t\right) \left(1 \pm A\right)
$$

The quartet helicity pattern removes linear drifts:

$$
A = \frac{\sum_{+} S_{+} - \sum_{-} S_{-}}{\sum_{+} S_{+} + \sum_{-} S_{-}}
$$

Asymmetry Data

Asymmetry Data Collection:

Detector yields are integrated over 1 ms for each helicity state Raw asymmetries are formed from differences between positive and negative helicity states within a quartet Quartet asymmetries are histogrammed

Data Size

Estimate 6 crates, "10 x Qweak data rate

75 - 100 Qweak ADCs (equivalent). 5 MByes/sec per crate \rightarrow 30 MB/sec total \rightarrow 100 GB/hour

WANT

- Real-time helicity-correlated feedback on Qasy (& possibly other parameters)
- Online Analysis checks of data quality.
- Prompt Analysis of 100% data with full corrections.

New Physics Sensitivities

New massive boson (dark photon) $\mathsf{U(1)}_\mathsf{d}\,$ (not a contact interaction):

MOLLER (1%, 2%, 3%)

A. Aleksejevs, S. Barkanova and W. Shihao

The mixing of the new $U(1)$ and $U(1)_y$ of the Standard Model is induced by loops of heavy particles, coupling to both fields.

We assume minimal coupling for Xμ to all charged Standard Model fermions ψ, with effective charge $e\psi \equiv e$, and eψ being the fermionic charge under U(1) QED . **Let us the COMPACE CONSTRANCE CONSTRANCE (1%, 2%, 3%)

MOLLER (1%, 2%, 3%)**

A. Aleksejevs, 5. Barkanova and W. Shihao

10⁻³ The mixing of the new U(1) and U(1)_y

of the Standard Model is induced by

loops of heavy **it fivilies**

act interaction):

act interaction):

sejevs, S. Barkanova and W. Shihao

ixing of the new U(1) and U(1)_y

Standard Model is induced by

of heavy particles, coupling to

ields.

sume minimal coupling for **SONSITIVITIES**

(not a contact interaction):

10⁻²

A MOLLER (1%, 2%, 3%)

A Aleksejevs, 5. Barkanova and W. Shihao

10⁻³ The mixing of the new U(1) and U(1)_y

of the Standard Model is induced by

loops of heavy pa **SCALLER (1%, 2%, 3%)**

MOLLER (1%, 2%, 3%)

A. Aleksejevs, 5. Barkanova and W. Shihao

The mixing of the new U(1) and U(1)_y

of the Standard Model is induced by

loops of heavy particles, coupling to

both fields.

We **Sitivities**
 X Atteraction):
 X External interaction (1%, 2%, 3%)
 X Exteriors, 5. Barkanova and W. Shihao

mixing of the new U(1) and U(1)_y

the Standard Model is induced by

s of heavy particles, coupling to

1

 $1 \times$ $F^{\mu\nu}$ is \overline{m} \overline{m} $m_{\nu}^2 \times \overline{m}$