High Voltage studies with Xe-129 for an nEDM experiment at TRIUMF

Katerina Katsika
• Spin precession frequency of neutrons in the presence of magnetic (B) electric (E) fields
• Using 129Xe/199Hg co-magnetometer to monitor the B-field changes
• Investigating the dielectric properties of 129Xe in the 1 mTorr range
• High voltage setup at TRIUMF
• Current status and next steps
• Summary
Spin precession frequency of neutrons in the presence of magnetic (B) and electric (E) fields

$$\omega_o = -2 \frac{\mu B}{\hbar}$$

\[\mu : \text{magnetic dipole moment (MDM)} \]
\[d : \text{electric dipole moment (EDM)} \]

\[\omega_o : \text{Larmor frequency} \]

\[\Delta B \neq 0 \]

\[\delta \nu_o = \frac{-4 \, dE}{\hbar} \]

If $\Delta B = 0$

$$2 \mu \frac{\Delta B}{\hbar} = 4 \frac{dE}{\hbar} \Rightarrow \Delta B = 40 \, fT$$

(over 10,000 runs if $d = 10^{-27} \, e \cdot cm$ and $E = 10 \, kV/cm$)

Unknown magnetic field fluctuations can produce a false EDM signal
Using 199Hg co-magnetometer to monitor the B-field changes

- B-field fluctuations are one of the main sources of systematics.
- An atomic co-magnetometer occupies the same space with neutrons and can accurately monitor the magnetic temporal changes.

Absorption \sim x-component of the spin polarisation (10-100 fT resolution).
Using 199Hg co-magnetometer to monitor the B-field changes

199Hg co-magnetometer in the ILL/Sussex/RAL nEDM experiment

129Xe compared to 199Hg has:

1. neutron absorption $\sigma_{Xe} = \frac{1}{100} \sigma_{Hg}$

2. same sign of gyromagnetic ratio

Dual 129Xe + 199Hg co-magnetometer

Improve systematics by data cross checking
Using 129Xe co-magnetometer to monitor the B-field changes

- Neutrons
- 129Xe atoms (spins precess on xy plane with ω_z)

204Hg discharge lamp (along x)

Magnetic shielding

Polarised light

$\pm V$

$V = 0$

129Xe 2-photon emission

Detect a ~ 900 nm emitted photon
Investigating the dielectric properties of Xe

129Xe density \rightarrow Optical signal

129Xe density \rightarrow Neutron density N (via absorption & up-scattering)

129Xe density \rightarrow Breakdown Voltage

Statistical sensitivity

$$\sigma_d \propto \frac{1}{E \cdot \sqrt{N}} \left(\frac{\hbar}{2 T_s} \right)$$

E = Electric field
N = neutron numb. density
T_s = neutron storage time

Yamamoto 1977 Jpn. J. Appl. Phys. 16 343

P·d=0.1-5·10^{-2} [Torr · cm]

P·d=50·10^{-2} [Torr · cm]

F. Paschen 1889 (Wied. Ann., 37, 69)

http://commons.wikimedia.org/
High voltage setup at TRIUMF

Gas filling

Flat aluminum electrodes

100 kV feedthrough

High Voltage Power Supply

0 V

100 kV

V=0

OD=85 cm

V=0

~8 cm
Lessons learnt:

- Keep it simple by minimizing interfaces
- Maximize the distance of the grounded parts from the high voltage feed-through
- Eliminate sharp edges/holes
- Remove metal and carbon depositions from the ceramic (sandblasting) + smooth its surface
Incorporated the changes to a new setup

Gas filling inlet

Top electrode pusher.

Aluminum electrodes separated by a glass insulator

Ceramic support rods.

Wider support ring

High voltage setup at TRIUMF

88 cm

0 V

100 kV
Load Cell 0-500 lbs
(LCGB-500 Omega)
http://www.omega.ca/pptst/LCGB.html
Wider support alu ring. Ceramic support rods.

ANSYS Stress simulations

Sealing force \(\sim 500\) lbs
Ceramic tensile yield = 1400 psi
Safety factor = 6.2
Current status:

- 100 kV with a steel ball in vacuum
- Most of the parts of the new setup are ready

Our next tests:

- Assembly and test in vacuum and with gas

Next R&D steps:

- Study different geometries and materials for the electrodes to deliver as high as possible electric field.
R&D work is carried out at TRIUMF to develop the high voltage system for the nEDM experiment which will deliver an electric field:

- $E \sim 12 \text{ kV/cm}$
- Uniform $[\left(\frac{E_{\text{transv}}}{E}\right)_{\text{max}} = 1\%]$
- Stable

..across the neutron storage cell in the presence of ^{129}Xe (and possibly ^{199}Hg) co-magnetometer.
Backup slides
Next steps / Trench+O-ring groove geometry

For: \(d = s = b = \alpha = 0 \)

- \(1 \text{ mm} < r < 10 \text{ mm} \)
- \(1 \text{ mm} < d < 10 \text{ mm} \)
- \(0 < s < 2 \text{ mm} \)
- \(0 < b < 0.1 \text{ mm} \)
- \(0 < \alpha < 10^\circ \)

M. Losekamm
B.Sc. Thesis

For: \(d = s = b = \alpha = 0 \)

- \(1 \text{ mm} < r < 10 \text{ mm} \)
Next steps / Trench+O-ring groove geometry

For $r = 5$ mm:
1 mm < d < 10 mm

For $r = 5$ mm, $d = 5$ mm: 0 < s < 2 mm

For $r = 5$ mm, $d = 5$ mm, $s = 1$ mm: 0 < α < 10°
Initially neutron spin is aligned with \mathbf{B}_0.

RF pulse on xy-plane near Larmor frequency.

Accumulated phase: $\varphi = (\omega - \omega_o) t_{ph}$.

Depending on the accumulated phase the second RF pulse will turn the spin up or down.

N. F. Ramsey, Phys. Rev. 76 996 (1949)
A. 199Hg atoms are polarised along z.

B. A transverse RF pulse at 199Hg resonance frequency forces the spins to precess on the xy-plane (8 Hz at 1 μT).

C. A beam of polarised light from 204Hg discharge lamp traverses the cell in the x-direction. Its absorption depends on the x-component of the spin polarisation which varies sinusoidally with time at the Larmor frequency (10-100 fT resolution).

\(^{129}\text{Xe} + ^{199}\text{Hg} \) dual co-magnetometer

\(^{129}\text{Xe} \) compared to \(^{199}\text{Hg} \) has:

1. 100 times smaller neutron absorption cross section
2. Same sign of gyromagnetic ratio with neutron
3. \(^{129}\text{Xe} \) atomic EDM limit is very close to that of neutron (\(2.9 \times 10^{-26} \text{ e} \cdot \text{cm} \)):

\[
 d_{\text{Xe}-129} < (0.7 \pm 3.3 \pm 0.1) \cdot 10^{-27} \text{ e} \cdot \text{cm}
\]

Needs to be improved by at least one or even better by two orders of Magnitude. Need to conduct \(^{129}\text{Xe} \) atomic EDM measurement using the \(^{199}\text{Hg} \) as co-magnetometer

Dual \(^{129}\text{Xe} + ^{199}\text{Hg} \) co-magnetometer

1/ Improve systematics by data cross checking
2/ Easy implementation as the laser requirements are quite similar
 (the transition lines are \(^{199}\text{Hg} \): 253.7 nm \(^{129}\text{Xe} \): 252.4 nm)
High voltage setup at TRIUMF

1st attempt: lessons learnt

- Epoxy
- Nylon cylinder (metal coated inner+top surface for grounding)
- Aluminum shield (HV)
- To the Power supply
- High Voltage Power Supply
High voltage setup at TRIUMF

Proved not trivial to handle materials of different thermal expansion coefficient.
High voltage setup at TRIUMF

Dielectric Strength
Epoxy: 115 kV/cm
Air: 30 kV/cm

Epoxy
Nylon cylinder (metal coated inner+top surface for grounding) (V=0)
Aluminum shield (HV)

To the HV electrode
To the Power supply

FEMM simulations
High voltage setup at TRIUMF

Aluminum corona ring (not polished) in air within a wide Faraday cage \((R_{\text{cage}} \sim 2.5R_{\text{cor. ring}}) \)

Reached feedthrough Voltage specification (100 kV)

To a GAMMA 125 kV Power Supply (neg. Voltage)

AIR (30 kV/cm)

Purple: \(E \sim 13 \text{ kV/cm} \)

\(V = 100 \text{ kV} \)

V = 0

FEMM simulations
High voltage setup at TRIUMF

Add an in-line 1 GΩ resistor to minimize energy dissipation in the event of a breakdown.

Stored energy @ 100 kV = 12.4 J
\[h \delta \nu_o = -2 d_n (E(\uparrow\uparrow) - E(\uparrow\downarrow)) \]

\(\delta \nu_o \): resonance frequency shift

\(E \): applied electric field

\(d_n \): neutron edm

nEDM experiment layout

Neutron cell

ULTRA COLD POLARISED NEUTRONS

SPALLATION TARGET

PROTON BEAM