The forward-backward asymmetry in $B o K^* \mu^+ \mu^-$

Mohammad Ahmady

Department of Physics Mount Allison University

June 18, 2015

Overview

- 1 The importance of B physics
- 2 Exclusive decays and form factors
- 3 Light cone sum rules
- 4 Light cone distribution amplitudes
- 6 AdS/QCD holographic light front wavefunction for hadronic bound states
- 6 Predictions for $B \rightarrow K^*$ transitions
- Summary and outlook

Focus on B mesons

- $m_b \gg \Lambda_{\rm QCD} \Rightarrow$ simplifies dealing with the strong force.
- Provides many diverse decay channels and associated observables
- Sensitivity to new physics

 $B \to K^* \mu^- \mu^+ \Rightarrow$ Exclusive rare decay to K^* $B \to X_s \mu^+ \mu^- \Rightarrow$ Inclusive rare decay to final states containing an s-quark

The focus of this talk is on exclusive decays.

- Experimentally favored especially in a hadronic environment like LHC.
- Theoretically challenging \Rightarrow strong interactions, form factors
- Due to $m_B \gg \Lambda_{\rm QCD}$, in certain kinematical regions, the number of form factors is reduced.
- Look for observables which are not very sensitive to form factors

Effective Hamiltonian

-The effective Hamiltonian for $b \rightarrow s$ transitions:

$$\mathcal{H}_{eff} = \frac{G_F}{\sqrt{2}} \sum_{p=u,c} V_{ps}^* V_{pb} \left[C_1 Q_1^p + C_2 Q_2^p + \sum_{i=3,...,10} C_i Q_i \right]$$

 $C_i, i = 1..10$ are the Wilson coefficients

$$\begin{aligned} Q_{1}^{p} &= (\bar{s}p)_{V-A}(\bar{p}b)_{V-A} & Q_{2}^{p} = (\bar{s}_{i}p_{j})_{V-A}(\bar{p}_{j}b_{i})_{V-A} \\ Q_{3} &= (\bar{s}b)_{V-A}\sum_{q}(\bar{q}q)_{V-A} & Q_{4} = (\bar{s}_{i}b_{j})_{V-A}\sum_{q}(\bar{q}_{j}q_{i})_{V-A} \\ Q_{5} &= (\bar{s}b)_{V-A}\sum_{q}(\bar{q}q)_{V+A} & Q_{6} = (\bar{s}_{i}b_{j})_{V-A}\sum_{q}(\bar{q}_{j}q_{i})_{V+A} \\ Q_{7} &= \frac{e}{8\pi^{2}}m_{b}\bar{s}_{i}\sigma^{\mu\nu}(1+\gamma_{5})b_{i}F_{\mu\nu} & Q_{8} = \frac{g}{8\pi^{2}}m_{b}\bar{s}_{i}\sigma^{\mu\nu}(1+\gamma_{5})T_{ij}^{a}b_{j}G_{\mu\nu}^{a} \\ Q_{9} &= \frac{e^{2}}{8\pi^{2}}\bar{s}\gamma^{\mu}(1-\gamma_{5})b\,\bar{\ell}\gamma^{\mu}\ell & Q_{10} = \frac{e^{2}}{8\pi^{2}}\bar{s}\gamma^{\mu}(1-\gamma_{5})b\,\bar{\ell}\gamma^{\mu}\gamma_{5}\ell \end{aligned}$$

New physics effects

In most scenarios, new physics do not change the structure of the effective operators but only make additional contributions to the Wilson coefficients, i.e.

$$C_i = C_i^{\rm SM} + C_i^{\rm NP}$$

Look for observables which are most sensitive to $C_i^{\rm NP}$

$B \rightarrow K^*$ transition form factors

Form factors are defined as:

$$\begin{aligned} \langle K^{*}(k,\varepsilon) | \bar{q} \gamma^{\mu} (1-\gamma^{5}) b | B(p) \rangle &= \frac{2iV(q^{2})}{m_{B}+m_{K^{*}}} \epsilon^{\mu\nu\rho\sigma} \varepsilon_{\nu}^{*} k_{\rho} p_{\sigma} - 2m_{K^{*}} A_{0}(q^{2}) \frac{\varepsilon^{*} \cdot q}{q^{2}} q^{\mu} \\ &- (m_{B}+m_{K^{*}}) A_{1}(q^{2}) \left(\varepsilon^{\mu*} - \frac{\varepsilon^{*} \cdot qq^{\mu}}{q^{2}} \right) \\ &+ A_{2}(q^{2}) \frac{\varepsilon^{*} \cdot q}{m_{B}+m_{K^{*}}} \left[(p+k)^{\mu} - \frac{m_{B}^{2} - m_{K^{*}}^{2}}{q^{2}} q^{\mu} \right] \end{aligned}$$

$$egin{aligned} q_
u \langle \mathcal{K}^*(k,arepsilon) | ar{d} \sigma^{\mu
u} (1-\gamma^5) b | B(p)
angle &= 2 T_1(q^2) \epsilon^{\mu
u
ho\sigma} arepsilon^*_
u p_
ho k_\sigma \ &- i T_2(q^2) [(arepsilon^* \cdot q)(p+k)_\mu - arepsilon^*_\mu (m_B^2 - m_{\mathcal{K}^*}^2)] \ &- i T_3(q^2) (arepsilon^* \cdot q) \left[rac{q^2}{m_B^2 - m_{\mathcal{K}^*}^2} (p+k)_\mu - q_\mu
ight] \end{aligned}$$

Z. Phys. C 63, 437-454 (1994)

ZEITSCHRIFT FÜR PHYSIK C © Springer-Verlag 1994

Exclusive radiative B-decays in the light-cone QCD sum rule approach

A. Ali^{1,*}, V.M. Braun^{2,**}, H. Simma³

¹Theory Division, CERN, CH-1211 Geneva 23, Switzerland ²Max-Planck-Institut für Physik-Werner-Heisenberg-Institut – D-80805, Munich, Germany ³Deutsches Elektronen Synchrotron DESY, D-22603 Hamburg, Germany

Received: 19 January 1994

(日) (同) (三) (三)

Light cone sum rules: Form factors obtained from distribution amplitudes

As an example, the form factor T_1 is given as the following in terms of twist 2 and 3 DAs

$$T_{1}(q^{2}) = \frac{1}{4} \left(\frac{m_{b}}{f_{B}m_{B}^{2}} \right) \exp\left(\frac{m_{B}^{2}}{M^{2}} \right) \int_{\delta}^{1} \frac{\mathrm{d}u}{u} \exp\left(-\frac{m_{b}^{2} + p^{2}u\bar{u} - q^{2}\bar{u}}{uM^{2}} \right) \left\{ m_{b}f_{K^{*}}^{\perp}\phi_{\perp}(u) + f_{K^{*}}m_{K^{*}} \left[\Phi_{\parallel}(u) + ug_{\perp}^{(v)}(u) + \frac{g_{\perp}^{(a)}(u)}{4} + \frac{(m_{b}^{2} + q^{2} - p^{2}u^{2})g_{\perp}^{a}(u)}{4uM^{2}} \right] \right\}$$

$$\begin{split} \delta &= (m_b^2 - q^2)/(s_0^B - q^2) \\ \text{The Borel parameter } M_B^2 &= 8 \text{ GeV}^2 \\ \text{The continuum threshold } s_0^B &= 36 \text{ GeV}^2 \\ \text{The quark mass } m_b &= 4.8 \text{ GeV} \end{split}$$

Light cone distribution amplitudes

Light cone coordinates: $x^{\mu} = (x^+, x^-, x_{\perp})$, where $x^{\pm} = x^0 \pm x^3$ and x_{\perp} any combinations of x_1 and x_2 .

At equal light-front time $x^+ = 0$ and in the light-front gauge $A^+ = 0$,

$$\begin{split} \langle 0 | \bar{q}(0) \gamma^{\mu} q(x^{-}) | K^{*}(P, \epsilon) \rangle &= f_{K^{*}} M_{K^{*}} \frac{\epsilon \cdot x}{P^{+} x^{-}} P^{\mu} \int_{0}^{1} \mathrm{d} u \ e^{-i u P^{+} x^{-}} \phi_{K^{*}}^{\parallel}(u, \mu) \\ &+ f_{K^{*}} M_{K^{*}} \left(\epsilon^{\mu} - P^{\mu} \frac{\epsilon \cdot x}{P^{+} x^{-}} \right) \int_{0}^{1} \mathrm{d} u \ e^{-i u P^{+} x^{-}} g_{K^{*}}^{\perp(v)}(u, \mu) \end{split}$$

$$\langle 0|\bar{q}(0)[\gamma^{\mu},\gamma^{\nu}]q(x^{-})|K^{*}(P,\epsilon)\rangle = 2f_{K^{*}}^{\perp}(\epsilon^{\mu}P^{\nu}-\epsilon^{\nu}P^{\mu})\int_{0}^{1}\mathrm{d}u\;e^{-iuP^{+}x^{-}}\phi_{K^{*}}^{\perp}(u,\mu)$$

$$\langle 0|\bar{q}(0)\gamma^{\mu}\gamma^{5}q(x^{-})|K^{*}(P,\epsilon)\rangle = -\frac{1}{4}\epsilon^{\mu}_{\nu\rho\sigma}\epsilon^{\nu}\mathcal{P}^{K^{*}}x^{\sigma}f_{K^{*}}M_{K^{*}}\int_{0}^{1}\mathrm{d}u\;e^{-iu\mathcal{P}^{+}x^{-}}g_{K^{*}}^{\perp(a)}(u,\mu)$$

Vector meson's polarization vectors ϵ are chosen as

$$\epsilon_L = \left(\frac{P^+}{M_{K^*}}, -\frac{M_{K^*}}{P^+}, 0_\perp\right)$$
 and $\epsilon_{T(\pm)} = \frac{1}{\sqrt{2}} (0, 0, 1, \pm i)$

Distribution amplitudes are normalized:

$$\int_0^1 \mathrm{d} u \; \phi_{K^*}^{\perp,\parallel}(u,\mu) = \int_0^1 \mathrm{d} u \; g_{K^*}^{\perp(a,\nu)}(u,\mu) = 1$$

 $x^- \to 0$ limit: usual definitions of f_{K^*} and $f_{K^*}^{\perp}$ are recovered:

$$\langle 0|ar{q}(0)\gamma^{\mu}q(0)|K^{*}(P,\epsilon)
angle = f_{K^{*}}M_{K^{*}}\epsilon^{\mu}$$

$$\langle 0|ar{q}(0)[\gamma^{\mu},\gamma^{
u}]q(0)|K^{*}(P,\epsilon)
angle=2f_{K^{*}}^{\perp}(\epsilon^{\mu}P^{
u}-\epsilon^{
u}P^{\mu})$$

G. F. de Teramond and S. J. Brodsky, PRL 102, 081601(2009).

The correspondence between string theory in five-dimensional antide Sitter (AdS)space and four-dimensional quantum chromodynamics (QCD) has enjoyed a number of successes.

The meson wavefunction in this model can be written as:

$$\phi_{\lambda}(z,\zeta) = \mathcal{N}_{\lambda} \frac{\kappa}{\sqrt{\pi}} \sqrt{z(1-z)} \exp\left(-\frac{\kappa^2 \zeta^2}{2}\right) \exp\left\{-\left[\frac{m_s^2 - z(m_s^2 - m_{\bar{q}}^2)}{2\kappa^2 z(1-z)}\right]\right\}$$

 \mathcal{N}_{λ} is fixed by normalization condition once spin wavefunction is included. $\zeta = \sqrt{x(1-x)}r$ $\kappa = m_{K^*}/\sqrt{2}$

 $x \Rightarrow$ the light-front longitudinal momentum fraction of the quark

 $r \Rightarrow$ the quark-antiquark transverse separation

R. Sandapen, MA PRD88.014042(2013)

$$\phi_{K^*}^{\parallel}(z,\mu) = \frac{N_c}{\pi f_{K^*} m_{K^*}} \int \mathrm{d}r \mu J_1(\mu r) [m_{K^*}^2 z(1-z) + m_f m_s - \nabla_r^2] \frac{\phi_L(r,z)}{z(1-z)}$$

$$\phi_{K^*}^{\perp}(z,\mu) = \frac{N_c}{\pi f_{K^*}^{\perp}} \int \mathrm{d}r \mu J_1(\mu r) [m_s - z(m_s - m_{\bar{q}})] \frac{\phi_T(r,z)}{z(1-z)}$$

$$g_{K^*}^{\perp(v)}(z,\mu) = \frac{N_c}{2\pi f_{K^*} M_{K^*}} \int \mathrm{d}r \mu J_1(\mu r) \left[(m_s - z(m_s - m_{\bar{q}}))^2 - (z^2 + (1-z)^2) \nabla_r^2 \right] \frac{\phi_{K^*}^{\mathsf{T}}(r,z)}{z^2(1-z)^2}$$

$$\frac{\mathrm{d}g_{K^*}^{\perp(a)}}{\mathrm{d}z}(z,\mu) = \frac{\sqrt{2}N_c}{\pi \tilde{f}_{K^*}M_{K^*}} \int \mathrm{d}r\mu J_1(\mu r)[(1-2z)(m_s^2 - \nabla_r^2) + z^2(m_s + m_{\bar{q}})(m_s - m_{\bar{q}})] \frac{\phi_{K^*}^T(r,z)}{z^2(1-z)^2} + \frac{1}{2}(1-z)(m_s^2 - \nabla_r^2) + \frac{1}{2}(m_s - m_{\bar{q}})(m_s - m_{\bar{q}})] \frac{\phi_{K^*}^T(r,z)}{z^2(1-z)^2} + \frac{1}{2}(1-z)(m_s^2 - \nabla_r^2) + \frac{1}{2}(1-z)(m_s^2 - \nabla$$

$$f_{K^*} = \frac{N_c}{m_{K^*}\pi} \int_0^1 \mathrm{d}z \left[z(1-z)m_{K^*}^2 + m_{\bar{q}}m_s - \nabla_r^2 \right] \frac{\phi_L(r,z)}{z(1-z)} \bigg|_{r=0}$$
$$f_{K^*}^{\perp}(\mu) = \frac{N_c}{\pi} \int_0^1 \mathrm{d}z (m_s - z(m_s - m_{\bar{q}})) \int \mu J_1(\mu r) \frac{\phi_T(r,z)}{z(1-z)}$$

AdS/QCD DAs for K^* :comparison to Sum Rules

(a) Twist-2 DA for the longitudi- (b) Twist-2 DA for the transversely nally polarized ρ meson polarized ρ meson

Figure: Twist-2 DAs for the K^* meson. Solid Blue: AdS/QCD DA; Dashed Red: Sum Rules DA.

AdS/QCD prediction for $B \rightarrow K^*$ transition form factors

R. Campbell, S. Lord, R. Sandapen, MA, PRD89.074021(2014) Lattice points \Rightarrow R. Horgan, Z. Liu, S. Meinel, M. Wingate PRD89.094501(2014)

Mohammad Ahmady

CAP 2015

June 18, 2015 15 / 20

Two-parameter fit for the form factors

The values of a and b are obtained by fitting

$${\cal F}(q^2) = rac{{\cal F}(0)}{1 - {\it a}(q^2/m_B^2) + b(q^4/m_B^4)}$$

to both the AdS/QCD predictions for low-to-intermediate q^2 and the lattice data at high q^2 .

F	F(0)	а	b
A_0	0.285	1.314	0.160
A_1	0.249	0.537	-0.403
A_2	0.235	1.895	1.453
V	0.277	1.783	0.840
T_1	0.255	1.750	0.842
T_2	0.251	0.555	-0.379
<i>T</i> ₃	0.155	1.208	-0.030

The data points are obtained by averaging LHCb data for dileptonic B^+ and B° decays. The dashed curves are the result of shifting the Wilson coefficient C_9 by -1.5. The grey band represents the uncertainty due to scale dependence.

$$\frac{dA_{\rm FB}}{dq^2} \equiv \frac{1}{d\Gamma/dq^2} \left(\int_0^1 d(\cos\theta_\ell) \, \frac{d^2\Gamma}{dq^2 d\cos\theta_\ell} - \int_{-1}^0 d(\cos\theta_\ell) \, \frac{d^2\Gamma}{dq^2 d\cos\theta_\ell} \right) \quad (1)$$

The data points are from LHCb. The dashed curves are the result of shifting the Wilson coefficient C_9 by -1.5. The grey band represents the uncertainty due to scale dependence.

Isospin asymmetry in dileptonic $B \rightarrow K^* \mu^+ \mu^-$

S. Lord, R. Sandapen, MA, PRD90.074010(2014)

The data points are from LHCb. The dashed red curve is the prediction of the QCD sum rules. The grey band represents the uncertainty due to scale dependence.

- AdS/QCD LFWF is used to obtain K^* DAs.
- DAs are essential ingredients for the calculation of the $B \rightarrow K^*$ transition form factors via LCSR.
- The predictions for rare dileptonic B decays to K^* are presented.
- AdS/QCD prediction for diffractive ϕ production will motivate its application to $B \rightarrow \phi$ transitions.
- It would be interesting to look into the AdS/QCD predictions for $B \rightarrow \pi, K$.