New Developments in Large Area THGEMs & APV Exercise

INFN - Sezione di Trieste

Carlos Alexandre Fernandes dos Santos

11/December/2014

Contents

THGEM Hybrid Detector + APV Readout

Motivation

Setup & Results obtained

Conclusions

Large Area THGEMs

Motivation

Setup & Results obtained

Conclusions and future work

THGEM Hybrid Detector + APV Readout

Motivation of the Exercise

Motivation of the Exercise

Analogue Readout:

- Charge Sensitive pre-amplifier Cremat (CR110/111) + Ortec Amplifier + Amptek MCA
- Readout through 16 pads connected together by the connector shown in the picture.
- Gain determination: ≈ 10⁵.

Digital Readout:

Readout chain: same as RICH-1 - MAPMT

- C-MAD
- Roof
- DREISAM card

Motivation of the Exercise

320 pads of 576 switched off because of even higher noise.

What causes such high noise level?! Detector? Electronics?! Coupling of a hybrid detector to our digital electronics??

APV Test @ RD51 Lab (thanks for the help provided)

Exercise Setup

4 (short) days in the RD51 Laboratory

300 x 300 mm² double THGEM Hybrid detector in Ar/CO₂ (70/30) atmosphere

• It is the detector used at the test beam, no change of THGEM/MM

New double Kapton and Quartz window equipped

- Iron 55 source
- UV led Sepia LED head @ 245 nm + PLD 800 pulser max pulsing rate 10 MHz

DAQ

- Standard CR110 pre-amplifier + Ortec amplifier + MCA
- DATE based with APV FE cards SRS system and AmoreSRS

Analogue Readout test

- Data acquisition for testing the system
- Gain Determination for comparison with APV

The conditions (Voltages and Gas) used to obtained this gain were kept unchanged during the whole APV exercise.

APV-First tests

Configuration

2 Apv chips 1 master, 1 Slave, Interface board for our 2x8 connector to the Panasonic;

1 chip 128 ch \rightarrow 16 connectors of 8 pads each

First Issue → Noise of the chip

- when free (intrinsic)
- When coupled to the detector
- Offset from the ideal ADC channel
- rms of the noise for each channel

ADC Channel ←→ Charge calibration

232 electrons per ADC channel

Calibration of the gain and measurement of the noise for the apv25 electronics
K. Gnanvo, N. Liyanage, C.Gu, K. Saenboonruang 200
RD51 collaborators

APV-First tests: 1 chip connected to the detector; 1 free; HV OFF

APV-First tests: 1 chip connected to the detector; 1 free; HV OFF

APV-First tests: Timing issue

- all the events recorded in the 27 x 25 ns memory buffer (675 ns).
- 10 MHz Led pulsing with a photon detection efficiency of 2-3% → expected rate 15%
- Flat time distribution in the time buffer

in the thrill of the moment.

APV-First tests: events

Event Over Threshold, that enters the histogram (AmoreSRS) From pedestal file:

- -remove the baseline offset
- -compute the RMS after common mode subtraction
- -cut on the amplitude at 5 times the RMS of the channel

APV-First tests: N1471A vs N471A

APV-First tests: different shaping time

APV Exercise Conclusions

- The short studies point to low noise (possible to cut at 5 x RMS = 1fC) when coupling the APV chips to the capacitive hybrid detector.
- The HV units N471A and N1471A seem to behave similarly when using the APVs as readout.
- Gain Determination through the APV readout matches the gain determined through the analogue readout (although it depends on the shaping time).
- Shaping time does not influence the RMS Distribution.

Large Area THGEMs (300 mm x 600 mm)

Motivation

Goal: RICH Detector with an active area of 600 x 600 mm².

Motivation

Goal: RICH Detector with an active area of 600 x 600 mm².

Thickness #01 & #02 Respectively (units: um)

	473	472	473	473	473	475	472	4	74 473	471	471
	473	474	473	472	473	474	474	4	72	473	470
	471	472	474	473	473	474	474	4	<mark>73</mark> 470	473	471
	473	472	471	473	472	473	473	4	71 471	472	471
	471	470	470	472	471	472	471	4	72	472	474
	471	471	470	471	471	472	473	4	73 473	472	472
	472	472	470	472	473	473	473	4	<mark>74</mark> 471	471	473
	473	473	471	472	474	478	474	4	73 472	472	473
	474	473	473	473	472	471	471	4	71 471	471	472
Isola PC	CB thicknes	ss variation of	#F01 m	in	470	max	478	MAX erro	r 1.7%		
	469	469	470	474		472	473	473	469	469	469
	469 468	469 469	470 468	474 471		472 471	473 471	473 471	469 468	469 469	469 467
	0.00000					10.1 50.000			35400-19600		322.000.000
	468	469	468	471		471	471	471	468	469	467
	468 468	469 469	468 470	471 473		471 470	471 471	471 470	468 468	469 469	467 467
	468 468 469	469 469 468	468 470 470	471 473 472		471 470 469	471 471 470	471 470 469	468 468 468	469 469 469	467 467 467
	468 468 469 471	469 469 468 470	468 470 470 471	471 473 472 472		471 470 469 469	471 471 470 471	471 470 469 470	468 468 468 470	469 469 469 468	467 467 467 466
	468 468 469 471 470	469 469 468 470 471	468 470 470 471 470	471 473 472 472 471		471 470 469 469 469	471 471 470 471 469 471	471 470 469 470 470	468 468 468 470 468	469 469 469 468 467	467 467 467 466 467 467
	468 468 469 471 470 470	469 469 468 470 471 470	468 470 470 471 470 471	471 473 472 472 471 473		471 470 469 469 469 470	471 471 470 471 469	471 470 469 470 470 470	468 468 468 470 468 467	469 469 469 468 467 468	467 467 467 466 467

Setup

4 THGEM available! (#01 - #04) Each THGEM tested: ≈ 180 spectra!! Gas mixture: Ar/CO_2 (70:30)

Analogue readout chain: Cremat pre-amplifier (CR110) + Ortec Amplifier + Amptek MCA

 $E_{drift} = 1 \text{ kV/cm}$ $E_{induction} \approx 1.5 \text{ kV/cm}$

Irradiation with ⁵⁵Fe (Gain determination through the ⁵⁵Fe main peak)

THGEM Max ΔV Summary

	#01	#02	#03	#04
Max ΔV	1310 V	1300 V	1300 V	1330 V

(Maximum ΔV that the THGEM can stand, in the referred gas mixture, with recoverable discharges.)

Results are comparable to the ones obtained for 300 x 300 mm² pieces under the same circumstances!

Due to HV offsets

Gain equalization for #01

THGEM #01 & #02 Comparison

Large Area THGEMs Conclusions

- 300 x 600 mm² THGEMs present an approximately equal behaviour to its predecessor (300 x 300 mm²).
- All pieces have maximum gain in the same point → Anode problem?! → gain variance, not taking these points into account, for THGEM #01, #02 and #03 is respectively: 17%; 11%; 16%.
- These Studies show that we are in the right track and further studies can be performed.

Conclusion and next steps

Future Work

End

Thanks for your attention