

HARPO:

Measurement of polarised gamma rays (1.7 to 72MeV) with the HARPO TPC

Philippe Gros for the HARPO collaboration

- The HARPO project
- Setup at the NewSUBARU photon beam
- Gas monitoring
- Trigger with micromegas signal
- Other experiences
- Conclusions

HARPO

- TPC for measurement of polarised gamma rays
 - e⁺e⁻ conversion (MeV~GeV)
 - Various astrophysics applications (in space)
 - Low multiple scattering => high angular resolution
 - Sensitive to linear polarisation
 - High pressure gas for higher conversion probability
- Project LLR+Irfu, funded by P2IO and ANR

HARPO Demonstrator

Purpose

- Assess challenges
- Demonstrate performance in test beam
- Realisation
 - 30cm cubic TPC
 - Ar/iC₄H₁₀ 95/5 up to 5bar
 - micromegas+2GEM amplification
 - 2x288 strips readout (x&y),

HARPO Demonstrator

NewSUBARU photon beam

- Polarised gamma ray beam
 - Inverse Compton
 - electron beam 0.6, 1., 1.2 or 1.5 GeV
 - laser Nd (1ω or 2ω), Er or CO2
 polarised photons 1.71 to 72.3MeV
- Pulsed mode
 - Nd: 20kHz, Er:200kHz, CO2: not

NewSUBARU

HARPO in beam

Beam campaign

- ~20 of data taking
- 13 gamma energies, polarised or not
- 4 TPC orientation for angle systematics
- >60Mevents, >1TB of data
- probably >20% gamma converted in gas

HARPO gas system

- Sealed vessel
- Leaks minimised in vacuum with He system
- Gas filling procedure
 - vacuum pumping (<10⁻⁵bar)
 - "rinsing" with gas mixture ~100mbar
 - vacuum pumping (~10⁻⁷bar)
 - 2 bar fill

Gas monitoring

- No direct measurement of the gas
- Monitoring with track data
 - High momentum traversing tracks in Z
 - ~uniform energy deposition along Z (if corrected for angle)
 - Simple access to gain, drift velocity and absorption
 - Dedicated trigger line => ~2% of the events

Cosmic rays

Time evolution

Gas stability

- 23 days in beam with same gas
- Almost no leak (no pressure loss)
- Slight decrease of Vdrift
- Stable gain
- Not much contamination (absorption). Longer analysis (with more statistics) necessary.

Gamma trigger

- Trigger on conversion in the gas volume
 - at least one scintillator (=> timing + trigger information)
 - if available, laser trigger signal
 - mesh signal >1us (→ 3cm) later

Micromegas trigger signal

Trigger calibration

Timing

- With cosmic ray data
- Confirmed in beam

Trigger calibration

CFD threshold

- with beam data
- too low => many empty events (electronic noise)
- too high => loss of good eventmany traversing events

Trigger performance

- Further analysis of course needed
- "By eye" it worked well
 - Most events originate on the beam

Pressure scan

- One day dedicated to pressure scan
 - "Clean" gas at 1, 1.5, 2, 3 and 4 bar
 - Signal amplitude (dE/dx x gain) ~fixed (Adjusted on the fly)
 - At high pressure, cathode voltage was limited
- Good running condition at all pressures
- Increasing micromegas current spikes at high pressure
 - matching GEM over current => physics?

Ballistic deficit?

- Observed signal loss at the center of the detector (beam axis)
 - Only at high rate
 - space charge? ballistic deficit? other?
- "Ballistic deficit"
 - shaping 116ns
 - tracks in Z direction => several μs signals
- Improved by misaligning the detector

Conclusion and outlook

- Successful beam campaign with gamma rays
- Good gas stability over more than 20 days
- Good trigger performance
- Most issues related to high rate in beam
- Lots of work necessary for quantitative results...

