

Towards spark-free single stage large THGEM

L. Moleri, M. Pitt, A. Kumar, S. Bressler, A. Breskin⁽¹⁾, C.D.A Azevedo, J.F.C.A Veloso ⁽²⁾, F. Amaro, M. Rjorge, J.M.F do Santos ⁽³⁾, E. Oliveri ⁽⁴⁾

(1) Weizmann Institute of Science (2) Aveiro University (3) Coimbra University (4) CERN

Outline

- Motivation
- The challenge
 - Discharges
 - Up-scaling
- Dealing with discharges
- Dealing with up-scaling
- Update from the TB preliminary results
- Summary

Motivation

- Charged particle & photon detection
- Large area coverage @ reasonable cost
- Good spatial resolution
- Good time resolution
- High counting rate
- Low material budget
- Broad dynamic range

MPGD: Motivation

Particle physics - MIP detection

- Large area coverage @ reasonable cost
- Good spatial resolution
- Good time resolution
- Moderate counting rate
- Low material budget

Imaging Calorimetry in SiD ILC

Baseline design - RPC

MPGD: Motivation

Inland security - µ detection

- Large area coverage @ reasonable cost
- Good spatial resolution
- Good time resolution

• Low counting rate

• Low material budget

The THick-GEM: A typical PR slide

10 folds larger than GEM \rightarrow Robust

- thickness $t \approx 0.4 3 \text{ mm}$
- $a \approx 0.5 1 \text{ mm}$
- $d \approx 0.2 0.5 \text{ mm}$
- $h \approx 0 0.1 \text{ mm}$

Simple

- Does not require sophisticated mechanical support (self supporting)
- Easy to operate

Production

- Industrially produced in PCB technologies
 - Italy, Israel, China, ...
- Large scale
- **Economic**

R. Chechik et al, NIM A535 (2004) 303

A. Breskin et al, NIM A623 (2010) 132

High gas gain

M. Cortesi et al., JINST 4 P08001 2009

Spatial resolution ~ 0.5 mm Time resolution \sim 7 ns (double stage)

The challenge - Discharges & instabilities

Overview

- No natural gain saturation mechanism
 - Gas gain increases with applied voltage
 - At fixed gain: total charge ∝ primary charge
- Breakdown at high charge density
 - May damage the detector
 - May damage the readout electronics
 - Dead time efficiency loss

Solutions

- Cascade detectors
 - Lower gain in each stage
 - Less charge in each detector cell
- Protection: resistive anodes
- Low noise electronics
 - lower operation gain

The Challenge: Up-scaling

Technicalities: large MPGDs

• Drill millions of THGEM holes

Uniform response: gain, discharge rate

- Uniform gaps
- Uniform element thickness
- Uniform cells quality
- Uniform resistivity values

THGEM holes

Resistivity

Capacitance

- More noise
- Energetic discharges

Power distribution

- Many high voltage channels
- Cross talk effects

Reproducibility

Industrialization

The Challenge: Application specific

The exact configuration should match the application Non application specific studies can only hint at the right direction

Dimensions (4000-5000 m², thickness < 8 mm inc. readout electronics) Detection efficiency (>98%) Coverage (dead area) Spatial resolution (1 cm^2) Time resolution (insignificant) Energy resolution ((S)DHACL) Rate capabilities (1 kHz/cm^2) Complexity (millions channels) Safety Aging effects Cost (<u>single-stage - must!</u>)

Test beam results - SRWELL for (S)DHCAL

Beam test evaluation: SRS/APV readout

- 4.8 6.3 mm thick single- and double-stage configurations
- Gains 1000-8000
- Detection efficiency > 95% @ pad multiplicity ≤ 1.2

But with single stage configurations discharge probability ~10⁻⁶

S. Bressler et. al, JINST 8 P07017 2013

Dealing with discharges

Response to Highly Ionizing Particles (HIPs)

- Mimic Highly Ionizing Particles in the lab
- Measure the discharge probability as a function of the number of primary electrons

- The *injector* method:
 - Use additional multiplication stage far from the detector
 - Multiply the electron from the x-ray conversion prior to the detector
 - Characterized the injector gain precisely

Response to HIPs

- The dynamic range of the detector is studied in conditions more similar to those in the experiment
 - Fixed gain (here ~ 5000)
 - Different ionization conditions
- Detectors with larger rims are more stable
- Multiplication in the induction gap results in more stable configuration
- WELL configurations are less stable than standard configurations

Decided:

Focus on configurations with 1 mm induction gap Multiply also in the induction gap (G_{ind}~10)

Average number of PE

30 x 30 cm² proto. with 1 mm induction gap

Structure similar to the one developed by Trieste; M Alexeev et. al, JINST 7 C02014 2012

Operation mode

- With multiplication in the induction field
- $E_{ind} = 3 \text{ kV/cm}$
- $G_{ind} \sim 10$

In the lab

- Good S/B with ⁵⁵Fe and cosmic muons
- High eff (>95%)
- Low multiplicity
- But also constant and uniform discharge rate
 - 20 / hour / strip

30 x 30 cm² proto. discharge study

Possible origins:

- FR4 radioactivity
 - Hard to assess?
- High Cosmic Landau tail
 - Expecting increase increase in discharge probability at 12000 PE
- Stress test with ⁹⁰Sr & injector
 - Reach ~10000 PE at relatively low rate
 - No increase in discharge probability

Decided:

Evaluate in the beam

• Possible outcome - single stage configurations with induction gap are simply not good enough...

The RPWELL

Resistive **P**late **WELL**:

- WELL coupled to materials with large bulk resistivity
- The charge is induced on the readout pads
- The avalanche charge flows through the plate to the anode (doesn't propagate sideways)
 - Less cross talk ? (under study)

Tested materials

Material	Dimensions [mm]	Bulk resistivity [Ωcm]
VERTEC 400 glass	36×31×0.4	8×10 ¹²
HPL Bakelite	29×29×2	2×10 ¹⁰
Semitron ESD 225	30×30×2	2×10 ⁹
Semitron ESD 225	30×30×4	3×10 ⁹

Focus on thin Semitron ESD 225 layers

Focus on thin Semitron ESD 225 layers

Improved performance with thinner (0.4 & 0.6 mm) layers - $R\sim #10^8 \Omega cm$

Smaller anode-cathode gap

Decided:
Build 10 x 10 cm² proto.
with 0.4 mm Semitron layer
Test in the lab
Test in the beam

Gain drops slower with rate

• Lower resistivity

Stable with HIPs

• Observe gain saturation

• Starting from the end: prototype 0 is ready

- First 50 x 60 cm²
 detector prototype
 produced by Lingacom
 - an Israeli company
 - Including all components
 - Operated in Ar
- Lingacom next step: produce 4-6 such units
- ~1/4 of a single system prototype
- Several hundreds of such systems are expected to be sold ...

Still a long way to go

- Looking inside: for now a configuration with induction gap
 - RPWELL is much easier to produce

- The large area is built a a mosaic of small electrode
 - Only good electrodes are selected
 - Based on electrical properties / Thickness uniformity / etc.
 - No post treatment of electrodes is needed (reduce the production cost)
 - Defected electrode can be replaced also at a later stage
- The electrodes are supported by a 'so-called' snake structures
 - Improves gas circulation along the full volume
- Power is supplied to each strip
 - Electrodes are connected using small 'jumpers'

Many remaining questions

- Trieste have shown that small area electrodes are stable (or at least stabler than large area electrodes)
 - What fraction of electrodes can be used?
- Performance is not yet estimated
 - Efficiency: need > 99 %
 - Resolution
- Uniformity
- Snake structure is a bit expensive to produce

Tests in the beam - happening now

2 detectors setup + telescope installed in SPS/H4 beam area:

30 x 30 cm² configuration with induction gap

10 x 10 cm² RPWELL 0.4 mm Semitron layer

Test Beam results - 30 x 30 cm² + induction

Test Beam results - 30 x 30 cm² + induction

Efficiency > 95% over all of the active area Inactive area (due to support structure) are easily identified

Test Beam results - 30 x 30 cm² + induction

Discharge analysis is on going

Comparing number of HIP events (PE>12000) to number of discharges

Landau for clusters that matched to a track within 1.0cm

Clear Landau distribution

Excellent signal to noise separation in low and high rate beams

200 ADC counts \sim Q = 4 fC \sim Effective gain = 3000

efficiency RPWELL (t=0.8,a=0.5,h=0.1,d=0.5) 0.8 Ne/CH₄(5%) at 100sccm E_{dei0} =0.5kV/cm; drift gap = 5mm 0.7 150GeV 2×2cm² μ beam; 20Hz/cm² 0.6 threshold 0 ADC threshold 50 ADC 0.5 threshold 100 ADC 0.4 Preliminary 1.2 1.6 multiplicity

High efficiency (>98%) at reasonably low multiplicity (1.1) - preliminary!

Uniform response

10% variation in gain over time - **preliminary!**Gain drop of order 30-40% over 4 orders of magnitude of rate - **preliminary!**

~10% increase in multiplicity for particle incoming angle of 45 degrees - **preliminary!**

Discharge free*!! Discharge prob < 10⁻¹⁰ (first approximation -

Preliminary)

Long Pi run. No current activity

Trips - long term high current - occur rarely

- At very high rates and high gains (at the same time)
- Recovery takes time
- Cause has to be understood

Analysis is on going

Test Beam: The remaining days

Two RPWELL 0.4 mm Semitron configurations:

- $10 \times 10 \text{ cm}^2$ 0.8 mm electrode; 3 mm drift
 - Operation in Ne/CH4 and maybe also Ar/ Co2
- 30 x 30 cm2 0.4 mm electrode; 5 mm drift
 - Electrode of bad quality (not intentionally)

30 x 30 cm²

Summary

- Single-stage THGEM based structure are suitable for applications that require *low cost* large area detection at moderate spatial resolution
- The most recent RPWELL is very promising
 - Discharge free at high gains
 - Excellent S/B separation
 - Moderate rate dependence
- Trips have to be understood
- Up scaling & Industrialization are in progress
- We are now producing our own "mosaic" detector
 - Can support an RPWELL
 - Can couple of ILC dedicated electronics

We are in the right way towards discharge-free single-stage THGEM detector

But we also still have a lot to understand

The THick-GEM - New PR slide?

10 folds larger than GEM → Robust

- thickness $t \approx 0.4 3 \text{ mm}$
- $a \approx 0.5 1 \text{ mm}$
- $d \simeq 0.2 0.5 \text{ mm}$
- $h \approx 0 0.1 \text{ mm}$

Simple

- Does not require sophisticated mechanical support (self supporting)
- Easy to operate

Production

- Industrially produced in PCB technologies
 - Italy, Israel, China, ...
- Large scale
- Economic

R. Chechik et al, NIM A535 (2004) 303 A. Breskin et al, NIM A623 (2010) 132

A. Rubin et. al, JINST 8 P11004 2013

High gas gain

Backup